Skip to main content
European Commission logo print header

Spin currents in magnetic nanostructures

Objective

MaSpic will create an autonomous team at the University of Konstanz to investigate the interaction between magnetization, spin - polarized and pure diffusive spin currents using novel instrumentation and innovative theoretical approaches. A thorough understanding of the fundamental charge and spin transport interaction mechanisms, key to use of the spin degree of freedom for Spintronics, will be developed. To understand the interplay between spin-polarized charge currents and magnetization configurations (adiabatic vs. non-adiabatic electron transport), the reciprocal effects of magnetization on the current (magnetoresistance) and of the current on magnetization (spin transfer torque) will be correlated for the same spin structures. Non-intrusive high resolution imaging at variable temperature will be used to probe the non-adiabaticity and help understand the hotly debated influence of thermal excitations on transport. Pure diffusive spin currents will be efficiently generated and used to manipulate magnetization with ultra-low power dissipation. The poorly understood spin current generation by the Spin Hall Effect and spin current propagation will be probed by direct imaging and the sign of the spin accumulation and influence of scattering determined to separate intrinsic and extrinsic effects. For the measurements a unique variable temperature high resolution SEMPA imaging system will be acquired and further developed including ultra-fast electrical contacts. Theoretical modelling using an atomistic Heisenberg approach will go beyond the conventional micromagnetic calculations that are limited to 0K. To understand thermal transport effects, temperature dependent simulations with adiabatic and non-adiabatic spin torque terms will accompany experiments. Realistic lattice structures and heterostructures will be modelled to simulate the influence of the pure spin currents on the magnetization using spatially varying interface torque terms, not previously possible.

Call for proposal

ERC-2007-StG
See other projects for this call

Host institution

JOHANNES GUTENBERG-UNIVERSITAT MAINZ
EU contribution
€ 1 160 770,00
Address
SAARSTRASSE 21
55122 Mainz
Germany

See on map

Region
Rheinland-Pfalz Rheinhessen-Pfalz Mainz, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Principal investigator
Mathias Kläui (Dr.)
Administrative Contact
Julia Doré (Ms.)
Links
Total cost
No data

Beneficiaries (2)