Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

High relative accuracy matrix techniques for linear and non-linear structured eigenvalue problems and applications

Ziel

Development of matrix algorithms for solving linear and non-linear structured eigenvalue problems with high relative accuracy or with the best accuracy possible. We will particularly focus on problems which reduce to eigenvalue problems for Hamiltonian and skew-Hamiltonian problems since those appear in important applications. We will combine standrad algorithms for such problems with known high relative acuracy methods for some other matrix problems in orther to develop high relative accuracy algorithms for some of the structured problems. We will also investigate newly propsed method for clustering almost stochastic matrices which is used for the identification of meta-stable states of Markov chains. In this case high relative accuracy requirement reduces to compuation of correct signs of the singular vectors of the second largest singular value, but as fast as possible.

Aufforderung zur Vorschlagseinreichung

FP7-PEOPLE-2007-2-1-IEF
Andere Projekte für diesen Aufruf anzeigen

Koordinator

TECHNISCHE UNIVERSITAT BERLIN
EU-Beitrag
€ 111 036,49
Adresse
STRASSE DES 17 JUNI 135
10623 Berlin
Deutschland

Auf der Karte ansehen

Region
Berlin Berlin Berlin
Aktivitätstyp
Higher or Secondary Education Establishments
Kontakt Verwaltung
Annette Schade (Dr.)
Links
Gesamtkosten
Keine Daten