
Fact Sheet

Objective

Fouling of heat exchangers in refining industry crude oil preheat trains is a chronic operating problem that reduces heat transfer and energy recovery in these systems costing the industry $4.5 billion per annum. Eight percent of industrial plant operating costs may be attributed to heat exchanger fouling. Despite enormous costs associated with fouling, the industry relies on off-line cleaning because there are no on-line systems capable of operating under high temperature, low velocity conditions with chemically reactive fluids. The cost of taking plant off-line inevitably means that the heat exchanger operates at significantly less than peak efficiency. Our proposed solution is to develop an innovative projectile based on-line cleaning and injection system that will work under the required operating conditions to mitigate foulant build-up throughout the heat exchanger. Achieving our objectives will require
research to formulate accurate correlations of foulant deposition rate as a function of geometry and operating conditions, the development of a composite projectile material to achieve the required mechanical properties and chemical stability as well as a projectile trajectory control system to deliver a uniform distribution of projectiles over the heat exchanger tube-face. Furthermore; ensuring that projectiles are propelled through the heat exchanger tubes in a low velocity regime will require us to devise a means to temporarily increase flow velocity through selected heat exchanger tubes. Research will concentrate on characterizing foulant deposition mechanism, structure and rate, projectile tribology as well as gaining a detailed understanding of heat exchanger fluid flow and its control. The proposed solution will provide the industry with significant energy savings of over 10% and reduce the CO2 footprint across a wide range of industrial sectors.

Field of science

/engineering and technology/environmental engineering/energy and fuels/fossil energy/gas
/natural sciences/mathematics/pure mathematics/geometry
/engineering and technology/environmental engineering/waste management/energy recovery
/engineering and technology/mechanical engineering/tribology
/engineering and technology/environmental engineering/waste management/energy efficiency

Programme(s)

Topic(s)

Call for proposal

FP7-ENERGY-2008-1

Funding Scheme

CP - Collaborative project (generic)

Coordinator

THE UK INTELLIGENT SYSTEMS RESEARCH INSTITUTE LIMITED

Address
Pera Business Park
Nottingham Road
LE13 0PB Melton Mowbray
United Kingdom

Activity type
Private for-profit entities
(excluding Higher or Secondary Education Establishments)

EU contribution
€ 736 007
Participants (4)

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Country</th>
<th>EU Contribution</th>
<th>Address</th>
<th>Activity Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUBE TECH INTERNATIONAL LIMITED</td>
<td>United Kingdom</td>
<td>€ 669 947</td>
<td>Rawreth Industrial Estate, Rawreth Lane 14, SS6 9RL Rayleigh</td>
<td>Private for-profit entities (excluding Higher or Secondary Education Establishments)</td>
</tr>
<tr>
<td>UNIVERSITAET STUTTGART</td>
<td>Germany</td>
<td>€ 730 191</td>
<td>Keplerstrasse 7, 70174 Stuttgart</td>
<td>Higher or Secondary Education Establishments</td>
</tr>
<tr>
<td>BIPROTECH SP. Z O.O.</td>
<td>Poland</td>
<td>€ 62 736</td>
<td>Ul. Kapelanka 17/2, 30-347 Krakow</td>
<td>Private for-profit entities (excluding Higher or Secondary Education)</td>
</tr>
</tbody>
</table>
COOLING QUALITY MANAGEMENT LTD
Israel
EU contribution
€ 797 957
Address
Meshek 51
73175 Tirat Yehuda
Activity type
Private for-profit entities
(excluding Higher or Secondary Education Establishments)
Website
Administrative Contact
Chemi Sugarmen (Mr.)
Contact the organisation
Permalink: https://cordis.europa.eu/project/id/227462/
© European Union, 2020