Project Information

sFly
Grant agreement ID: 231855

Funded under
FP7-ICT

Overall budget
€ 3 358 251

EU contribution
€ 2 550 000

Coordinated by
EIDGENOESSISCHE
TECHNISCHE HOCHSCHULE
ZUERICH
Switzerland

Start date
1 January 2009
End date
31 December 2011

Project description

Cognitive Systems, Interaction, Robotics
Micro helicopter design, vision-based motion estimation and 3D reconstruction without GPS

In the sFLY project autonomous micro helicopters are about to play major roles in tasks like search and rescue, security surveillance and law enforcement. The ability to fly allows to avoid obstacles on the ground and to have an excellent bird’s eye view. Their navigational and hovering advantages make them the ideal platform for exploration, mapping and monitoring tasks. Fully autonomous operation in cities or other dense environments involves challenges on all levels of helicopter design, perception, actuation, control, navigation and power supply that
have yet to be solved. This project will focus on micro helicopter design, visual 3D mapping and navigation, low power communication and multi-robot control under environmental constraints. It will lead to novel micro flying robots that are: inherently safe due to very low weight; capable of vision-based fully autonomous navigation and mapping; capable of coordinated flight in small swarms in constrained and dense environments.

Autonomous micro helicopters are about to play major roles in tasks like reconnaissance for search and rescue, environment monitoring, security surveillance, inspection, law enforcement, etc. The ability to fly allows easily avoiding obstacles on the ground and to have an excellent bird’s eye view. Therefore flying robots are the logical heir of ground based mobile robots. Its navigational and hovering advantages make them the ideal platform for exploration, mapping and monitoring tasks. If they are further realized in small scale, they can also be used in narrow out- and indoor environment and they represent only a limited risk for the environment and people living in it. However, for such operations today’s systems navigating on GPS information only are not sufficient any more. Fully autonomous operation in cities or other dense environments requires the micro helicopter to fly at low altitude or indoors where GPS signals are often shadowed and to actively explore unknown environments while avoiding collisions and creating maps. This involves a number of challenges on all levels of helicopter design, perception, actuation, control, navigation and power supply that have yet to be solved. Our S and T endeavor proposed in this project will therefore focus on micro helicopter design, visual 3D mapping and navigation, low power communication including range estimation and multi-robot control under environmental constraints. It shall lead to novel micro flying robots that are:• Inherently safe due to very low weight (around 500g) and appropriate propeller design;• capable of vision-based fully autonomous navigation and mapping;• able of coordinated flight in small swarms in constrained and dense environments.

Fields of science

Programme(s)

Topic(s)

Call for proposal
Funding Scheme

Coordinator Contact

Davide SCARAMUZZA (Dr.)

Coordinator

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH

Address
Raemistrasse 101
8092 Zuerich
Switzerland

Activity type
Higher or Secondary Education Establishments

EU contribution
€ 1 167 235

Website
Contact the organisation

Administrative Contact
Roland Siegwart (Prof.)

Participants (5)

CSEM CENTRE SUISSE D'LECTRONIQUE ET DE MICROTECHNIQUE SA - RECHERCHE ET DEVELOPPEMENT

Address
Rue Jaquet Droz 1
2000 Neuchatel

Activity type
Research Organisations

EU contribution
€ 340 625

Website
Contact the organisation

Administrative Contact
Jean-Dominique DECOTIGNIE (Prof.)

ASCENDING TECHNOLOGIES GMBH

Address

Website

Administrative Contact

Contact the organisation
Germany

EU contribution
€ 300 800

Address
Konrad Zuse Bogen 4
82152 Karilling

Activity type
Private for-profit entities
(excluding Higher or Secondary Education Establishments)

Contact the organisation

Administrative Contact
Jan Stumpf (Mr.)

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE

France

EU contribution
€ 320 640

Address
Domaine De Voluceau
Rocquencourt
78153 Le Chesnay Cedex

Activity type
Research Organisations

Website
Contact the organisation

Administrative Contact
Agostino Martinelli (Dr.)

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS

Greece

EU contribution
€ 231 058

Address
Charilaou Thermi Road 6 Km
57001 Thermi Thessaloniki

Activity type
Research Organisations

Website
Contact the organisation

Administrative Contact
Costas Kiparissides (Prof)

TECHNICAL UNIVERSITY OF CRETE

Greece

EU contribution
€ 189 642