Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

DESIGN AND ELABORATION OFMULTI-PHYSICS INTEGRATED NANOSYSTEMS

Objective

The innovation of DELPHINS application will consist in building a generic multi-sensor design platform for embedded multi-gas-analysis-on-chip, based on a global modelling from the individual NEMS sensors to a global multiphysics NEMS-CMOS VLSI (Very large Scale Integration) system. The latter constitute a new research field with many potential applications such as in medicine (specific diseases recognition) but also in security (toxic and complex air pollutions), in industry (perfumes, agribusiness) and environment control. As an example, several studies in the last 10 years have demonstrated that some specific combination of biomarkers in breath above a given threshold could indicate early stage of diseases. More generally, patterns of breathing gas could constitute a virtual fingerprint of specific pathologies. NEMS (Nano-Electro-Mechanical Systems) based sensor is one of the most promising technologies to get the required resolutions and sensitivities for few molecules detection. We will focus on the analytical module of the system (sensing part + embedded electronics processing) that will include ultra-dense (more than thousands) NEMS arrays with state-of the art CMOS transistors. We will obtain integrated nano-oscillators individually addressed within an innovative architecture inspired from memory and imaging technologies. Few molecules sensitivity will be achieved thanks to suspended resonant nanowires co-integrated locally with their closed-loop and reading electronics. This would make possible the analysis of complex gases within an integrated portable system, which does not exist yet.

Call for proposal

ERC-2009-StG
See other projects for this call

Host institution

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
EU contribution
€ 1 723 206,49
Address
RUE LEBLANC 25
75015 PARIS 15
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Administrative Contact
Marie-Laure Page (Ms.)
Principal investigator
Thomas Ernst (Dr.)
Links
Total cost
No data

Beneficiaries (1)