Robotic ADaptation to Humans Adapting to Robots

Fact Sheet

Project Information

RADHAR

Grant agreement ID: 248873

Funded under
FP7-ICT

Overall budget
€ 3 292 071

EU contribution
€ 2 418 212

Coordinated by
KATHOLIEKE UNIVERSITEIT LEUVEN
Belgium

Start date
1 August 2010

End date
31 July 2013

Closed project

Project description

Cognitive Systems and Robotics
Intelligent Robotic wheelchair - Shared autonomy between human and the wheelchair

The success of airplanes autopilots in reducing navigational complexity and improving safety explains the strong interest to introduce navigational assistance in other transportation means as well. However, implementing robotic navigation correction on a large scale also represents a potential safety risk for millions of users. For this reason, a thorough understanding of driver behaviour is imperative, besides pervasive environment perception. RADHAR proposes a framework to seamlessly fuse the inherently uncertain information from both environment perception and the
driver’s steering signals by estimating the trajectory the robot should execute, and to adopt this fused information for safe navigation with a level of autonomy adjusted to the user’s capabilities and desires.

The first autopilots in airplanes can be traced back to the beginning of the twentieth century. These devices greatly reduced the pilot’s workload by taking over parts of the navigation. The success of autopilots in reducing navigational complexity and improving safety explains the recent interest to introduce navigational assistance in other transportation means as well. However, implementing robotic navigation correction on a large scale also represents a potential safety risk for its users. For example, some plane crashes have been attributed to the incorrect estimation by pilots of the state of the plane’s automatic pilot, an effect known as mode confusion. RADHAR therefore proposes a novel framework to design human-aware adaptive autonomy that avoids mode confusion by embedding a thorough understanding of diver behaviour and estimated intention into the decision making. Through lifelong, unsupervised learning, the robot will fuse the inherently uncertain information from environment and driver perception sensors; autonomously estimate the user model and intention and calculate a human-friendly trajectory. Since human characteristics vary over time a continuous interaction between two learning systems will emerge, hence RADHAR: Robotic ADaptation to Humans Adapting to Robots. In order to apply this framework to realistic real-world scenarios, sensor models will be developed to build 3D models of the environment with estimation of dynamic obstacles’ motion and terrain traversability. To verify driver model assumptions such as focus-of-attention, the driver’s posture and facial expression will be estimated with a camera and a haptic interface. The framework will be demonstrated on a wheelchair platform that navigates in an everyday environment with everyday objects. Tests on various levels of autonomy can be performed easily and safely on wheelchairs. Evaluation will happen by a diverse and challenging population of wheelchair users who currently drive unsafely.
Funding Scheme

Coordinator Contact

Joris DE SCHUTTER (Prof.)

Coordinator

KATHOLIEKE UNIVERSITEIT LEUVEN

<table>
<thead>
<tr>
<th>Address</th>
<th>Activity type</th>
<th>EU contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oude Markt 13</td>
<td>Higher or Secondary Education Establishments</td>
<td>€ 808 645</td>
</tr>
<tr>
<td>3000 Leuven</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Website
Contact the organisation

Administrative Contact

Tine Heylen (Ms.)

Participants (8)

PROFACTOR GMBH

Austria

EU contribution

€ 384 513

<table>
<thead>
<tr>
<th>Address</th>
<th>Activity type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im Stadtgut D1</td>
<td>Other</td>
</tr>
<tr>
<td>4407 Steyr Gleink</td>
<td></td>
</tr>
</tbody>
</table>

Website
Contact the organisation

Administrative Contact

Andrea Möslinger (Ms.)

ACMIT GMBH

Austria

EU contribution
<table>
<thead>
<tr>
<th>EU contribution</th>
<th>Activity type</th>
<th>Address</th>
<th>Contact the organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>€ 133 786</td>
<td>Other</td>
<td>Viktor Kaplan Strasse 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2700 Wiener Neustadt</td>
<td></td>
</tr>
<tr>
<td>€ 72 063</td>
<td>Other</td>
<td>Vanheylenstraat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1820 Melsbroek</td>
<td></td>
</tr>
<tr>
<td>€ 84 928</td>
<td>Higher or Secondary Education Establishments</td>
<td>Schapenstraat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3000 Leuven</td>
<td></td>
</tr>
<tr>
<td>€ 74 325</td>
<td>Private for-profit entities (excluding Higher or Secondary Education)</td>
<td>E3 Laan</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9800 Deinze</td>
<td></td>
</tr>
</tbody>
</table>
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH

Switzerland

EU contribution
€ 405 186

Address
Raemistrasse 101
8092 Zuerich

Activity type
Higher or Secondary Education Establishments

Administrative Contact
Sandra Van Hove (Ms.)

ALBERT-LUDWIGS-UNIVERSITAET FREIBURG

Germany

EU contribution
€ 399 800

Address
Fahnenbergplatz
79098 Freiburg

Activity type
Higher or Secondary Education Establishments

Administrative Contact
Luc Van Gool (Prof.)

PERMOBIL AKTIEBOLAG

Sweden

EU contribution
€ 54 966

Address
Per Uddens Vag
861 23 Timra

Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)

Administrative Contact
Wolfram Burgard (Prof.)