Intelligent observation and execution of Actions and manipulations

Fact Sheet

Project Information

IntellAct
Grant agreement ID: 269959
Project website

Status
Closed project

Funded under
FP7-ICT

Overall budget
€ 3 899 781

EU contribution
€ 2 959 592

Coordinated by
SYDDANSK UNIVERSITET
Denmark

Project description

Cognitive Systems and Robotics
understanding and exploiting the meaning (semantics) of manipulations in terms of objects, actions and their consequences for reproducing human actions with machines

IntellAct addresses the problem of understanding and exploiting the meaning (semantics) of manipulations in terms of objects, actions and their consequences for reproducing human actions with machines. This is in particular required for the interaction between humans and robots in which the robot has to understand the human action and then to transfer it to its own embodiment. IntellAct will provide
means to allow for this transfer not by copying movements of the human but by transferring the human action on a semantic level. Two major application areas are addressed by IntellAct: the monitoring of human manipulations for correctness and the efficient teaching of cognitive robots to perform manipulations in a wide variety of applications.

IntellAct addresses the problem of understanding and exploiting the meaning (semantics) of manipulations in terms of objects, actions and their consequences for reproducing human actions with machines. This is in particular required for the interaction between humans and robots in which the robot has to understand the human action and then to transfer it to its own embodiment. IntellAct will provide means to allow for this transfer not by copying movements of the human but by transferring the human action on a semantic level. IntellAct will demonstrate the ability to understand scene and action semantics and to execute actions with a robot in two domains. First, in a laboratory environment (exemplified by a lab in the International Space Station (ISS)) and second, in an assembly process in an industrial context. IntellAct consists of three building blocks: (1) Learning: Abstract, semantic descriptions of manipulations are extracted from video sequences showing a human demonstrating the manipulations; (2) Monitoring: In the second step, observed manipulations are evaluated against the learned, semantic models; (3) Execution: Based on learned, semantic models, equivalent manipulations are executed by a robot.

The analysis of low-level observation data for semantic content (Learning) and the synthesis of concrete behaviour (Execution) constitute the major scientific challenge of IntellAct. Based on the semantic interpretation and description and enhanced with low-level trajectory data for grounding, two major application areas are addressed by IntellAct: First, the monitoring of human manipulations for correctness (e.g., for training or in high-risk scenarios) and second, the efficient teaching of cognitive robots to perform manipulations in a wide variety of applications. To achieve these goals, IntellAct brings together recent methods for (1) parsing scenes into spatio-temporal graphs and so-called „semantic Event Chains“, (2) probabilistic models of objects and their manipulation, (3) probabilistic rule learning, and (4) dynamic motion primitives for trainable and flexible descriptions of robotic motor behaviour. Its implementation employs a concurrent-engineering approach that includes virtual-reality-enhanced simulation as well as physical robots. Its goal culminates in the demonstration of a robot understanding, monitoring and reproducing human action.

Field of science

/ engineering and technology/electrical engineering, electronic engineering, information engineering/electronic engineering/robotics/cognitive robots
Programme(s)

Topic(s)

Call for proposal

FP7-ICT-2009-6

Funding Scheme

CP - Collaborative project (generic)

Coordinator

SYDDANSK UNIVERSITET

Address
Campusvej 55
5230 Odense M
Denmark

Activity type
Higher or Secondary Education Establishments

EU contribution
€ 674 700

Website
Contact the organisation

Administrative Contact
Norbert Krüger (Prof.)

Participants (5)

UNIVERSITAET INNSBRUCK

Address
Innrain 52
6020 Innsbruck
Austria

Activity type
Higher or Secondary Education Establishments

EU contribution
€ 538 140

Website
Contact the organisation

Administrative Contact
Boris Puschitz (Mr.)
<table>
<thead>
<tr>
<th>Organisation</th>
<th>EU contribution</th>
<th>Address</th>
<th>Activity type</th>
<th>Website</th>
<th>Administrative Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rheinisch-Westfälische Technische Hochschule Aachen</td>
<td>€ 462 450</td>
<td>Templergraben 55 52062 Aachen</td>
<td>Higher or Secondary Education Establishments</td>
<td>Contact the organisation</td>
<td>Ernst Schmachtenberg (Prof.)</td>
</tr>
<tr>
<td>Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts</td>
<td>€ 542 700</td>
<td>Wilhelmsplatz 1 37073 Göttingen</td>
<td>Higher or Secondary Education Establishments</td>
<td>Contact the organisation</td>
<td>Nadja Daghbouche</td>
</tr>
<tr>
<td>Agencia Estatal Consejo Superior de Investigaciones Científicas</td>
<td>€ 366 693</td>
<td>Calle Serrano 117 28006 Madrid</td>
<td>Research Organisations</td>
<td>Contact the organisation</td>
<td>Eusebio Jiménez Arroyo (Mr.)</td>
</tr>
<tr>
<td>Institut Jozef Stefan</td>
<td>€ 374 909</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>