Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
Contenuto archiviato il 2024-06-18

Optimization of Hydrogen Storage via Spillover through a Combined Experimental and Modeling Approach


The objective of the proposed work is to synthesize catalyzed nanoporous materials that have superior hydrogen uptake between 300K and 400K and moderate pressures (20-100 bar) via the hydrogen spillover mechanism. Hydrogen spillover involves addition of a catalyst to a high-surface area microporous support, such that the catalyst acts as a source for atomic hydrogen, the atomic hydrogen diffuses from the catalyst to the support, and ideally, the support provides a high number of tailored surface binding sites to maximize the number of atomic hydrogens interacting with the surface. The proposed work will provide a means to explore an extended collaboration to combine in situ spectroscopic techniques and theoretical multi-scale modeling calculations. Carbon-based and microporous metal-organic framework (MMOF) materials will be drawn from past and on-going projects, so that the project will focus on identifying specific binding sites for atomic hydrogen and resolving the hydrogen spillover mechanism. Materials will be selected to explore the effect of catalyst size, material composition and structure, interface, and the potential role of co-catalysts on optimizing uptake via the hydrogen spillover mechanism. Materials will be characterized with in situ spectroscopy, and multi-scale modeling will be used to identify hydrogenation sites. Validated theory will be used to direct future material development. Identification of the key sites responsible for high uptake in select materials is expected to lead significant increase in capacity and reproducibility in hydrogen spillover materials that are optimized for near-ambient temperature adsorption.

Invito a presentare proposte

Vedi altri progetti per questo bando


Contributo UE
€ 111 241,80
74100 Rethimno

Mostra sulla mappa

Νησιά Αιγαίου Κρήτη Ρέθυμνο
Tipo di attività
Higher or Secondary Education Establishments
Contatto amministrativo
George Stathakis (Prof.)
Costo totale
Nessun dato