Optimal SIC substrates for Integrated Microwave and Power Circuits

Results

Project information

OSIRIS

Grant agreement ID: 662322

[Project website](#)

Status: Closed project

Start date: 1 May 2015

End date: 30 November 2018

Funded under: H2020-EU.2.1.1.7.

Overall budget: € 4,487,117,50

EU contribution: € 1,819,212

Coordinated by: III-V LAB France

Deliverables

Websites, patent filings, videos etc. (7)

Newsletter 1

Project website

Workshop on material research

Workshop on devices and applications

Newsletter 2
Publications

Documents, reports (1)

Report thermal conductivity of substrates and epiwafers
LIU will report on the thermal conductivity of the different substrates and epiwafers used in the project

Conference proceedings (5)

Surface properties of AlInN/GaN heterostructures
Author(s): A. Minj, D. Skuridina, D. Cavalcoli, A. Cros, P. Vogt, M. Kneissl, H. Ben Ammar and P. Ruterana
Published in: E-MRS, Issue Spring meeting, 2-6 May 2016 Lille France, 2016

Results on specific backside opening process dedicated to engineering package for SiC component
Author(s): G. Bascoul, F. Infante
Published in: Association d'analyse de défaillance Française (ANADEF), Issue June 7-10 2016 Seignosse-Hossegor France, 2016

2/3-D Device Simulations as an Effective Tool in Microelectronics Education
Author(s): Aleš Chvála, Juraj Marek, Arpád Kósa, Patrik Príbytný, Ľubica Stuchlíková and Daniel Donoval

Transfer of Knowledge from Scientific Research Projects towards Middle School Scholars
Author(s): J. Kovác, jr, R. Szobolovský, A. Kósa, L. Stuchlíková and J. Kovác
Published in: ICETA, 2015

Thermal Management of multifinger Power HEMTs Supported by 3-D Simulation
Author(s): A. Chvála, J. Marek, P. Príbytný, J. Kováč, S. Delage, J.-C. Jacquet and D. Donoval

Peer reviewed articles (1)

Investigation of strain effects on phase diagrams in the ternary nitride alloys (InAlN, AlGaN, InGaN)

Author(s): Ranim Mohamad, Antoine Béré, Jun Chen, Pierre Ruterana

Published in: physica status solidi (a), Issue 214/9, 2017, Page(s) 1600752, ISSN 1862-6300

DOI: 10.1002/pssa.201600752

Thesis dissertations (1)

Relaxation de la contrainte dans les hétérostructures Al(Ga)InN/GaN pour applications électroniques: modélisation des propriétés physiques et rôle de l'indium dans la dégradation des couches épitaxiales

Author(s): Ranim Mohamad

Published in: 2018

Share this page

Last update: 7 October 2019
Record number: 197904

Permalink: https://cordis.europa.eu/project/id/662322/results/en

© European Union, 2019