Projektbeschreibung
Strömungsmechanische Stoßwellen für präzise Prozesse im Nanomaßstab
Die Strömungsmechanik ist ein wichtiges wissenschaftliches Gebiet mit einzigartigen Eigenschaften, die für eine Reihe von Technologien erhebliche Vorteile bieten. Insbesondere Stoßwellen sind aufgrund ihrer Fähigkeit, eine beträchtliche Menge an Energie und Kraft zu erzeugen, sehr vielversprechend. Sie sind nützlich für Aufgaben, die chirurgische Präzision erfordern, wie die Verabreichung von Medikamenten in situ und die Lithotripsie. Im Rahmen des vom Europäischen Forschungsrat finanzierten Projekts NANOSHOCK sollen Stoßwellenprozesse eingehend untersucht und präzise Experimente durchgeführt werden, um unser Verständnis und unser Fachwissen über ihre Anwendung zu erhöhen. Ziel ist es, Präzision und Wirksamkeit zu verbessern und gleichzeitig mögliche Nebenwirkungen zu minimieren.
Ziel
Fluid dynamics are fundamental to a wide spectrum of natural phenomena and technological applications. Among the most intriguing fluid dynamics events are shockwaves, discontinuities in the macroscopic fluid state that can lead to extreme temperatures, pressures and concentrations of energy.The violence and yet the spatial localization of shockwaves presents us with a unique potential for in situ control of fluid processes with surgical precision. Applications range from kidney-stone lithotripsy and drug delivery to advanced aircraft design. How can this potential be leveraged/harnessed? What mechanisms and inherent properties allow for formation and control of shocks in complex environments such as living organisms? How can shocks be generated in situ and targeted for drug delivery with high precision while minimizing side effects? What is the potential of reactive/fluidic-process steering by shock-interaction manufacturing?
Our objective is to answer these questions by state of the art computational methods, supported by benchmark quality experiments. Computations will be based on advanced multi-resolution methods for multi-physics problems with physically consistent treatment of sub-resolution scales. Uncertainty quantification will be employed for deriving robust flow and shock-dynamic field designs. Paradigms and efficient computational tools will be delivered to the scientific and engineering community. Our group has strong foundations in complex-fluid physics and computational methods and a strong record of successfully integrating research and technical applications. Our goal is to provide un-precedented insight into shock generation and dynamics in complex environments and to unravel the path to technical solutions. Leveraging the enormous potential of manufactured shocks in situ gives access to breakthrough innovations and high-impact technologies, ranging from shock-driven nanoparticle reactors to non-invasive shock-mediated low-impact cancer therapies.
Wissenschaftliches Gebiet
- natural sciencesphysical sciencesclassical mechanicsfluid mechanicsfluid dynamics
- engineering and technologynanotechnologynano-materials
- natural sciencescomputer and information sciencescomputational sciencemultiphysics
- natural sciencesmathematicsapplied mathematicsnumerical analysis
- natural sciencesphysical sciencesopticslaser physics
Programm/Programme
Thema/Themen
Finanzierungsplan
ERC-ADG - Advanced GrantGastgebende Einrichtung
80333 Muenchen
Deutschland