Creating an electron-positron plasma in a laboratory magnetosphere

Fact Sheet

Project Information

PAIRPLASMA
Grant agreement ID: 741322

Funded under
H2020-EU.1.1.

Project website

Overall budget
€ 2,378,958

EU contribution
€ 2,378,958

Status
Ongoing project

Hosted by
Klinik Max Planck Institut für Psychiatrie
Germany

Start date
1 August 2017

End date
31 July 2022

Objective

The visible Universe is predominantly in the plasma state. On Earth, plasmas are less common, but they find many applications in industry and are also studied with the goal of providing an abundant energy source for mankind through fusion energy. The behaviour of plasmas studied thus far, in particular those that are magnetized, is very complex. The complexity manifests itself first and foremost as a host of different wave types, many of which are generically unstable and evolve into turbulence or violent instabilities. This complexity and the instability of these waves stems to a large degree from effects that can be traced back to the difference in mass between the positive and negative species, the ions and the electrons.

In contrast to conventional ion-electron plasmas, electron-positron (pair) plasmas consist of equal-mass charged particles. This symmetry results in unique behaviour
of the pair plasmas, a topic that has been intensively studied theoretically and numerically for decades but experimental studies are only just starting. These studies are not only driven by curiosity: Strongly magnetized electron-positron plasmas are believed to exist ubiquitously in pulsar magnetospheres and active galaxies in the Universe, and the entire Universe is believed to have been a matter-antimatter symmetric plasma in its earliest epochs after the Big Bang.

We propose here to create and study the first long-lived and confined pair plasmas on Earth. This is now possible by combining novel techniques in plasma and beam physics. We will develop a levitated dipole confinement device and will fill it with readily available electrons and low-energy positrons from the world-leading steady-state positron source.

Field of science

/natural sciences/physical sciences/astronomy/physical cosmology/big bang
/natural sciences/physical sciences/theoretical physics/particles

Programme(s)

Topic(s)

Call for proposal

ERC-2016-ADG

Funding Scheme

ERC-ADG - Advanced Grant

Host institution

Klinik Max Planck Institut für Psychiatrie

Address

Hofgartenstrasse 8
80539 Muenchen

Germany

Activity type

Private for-profit entities
(excluding Higher or Secondary Education Establishments)

EU contribution

€ 2 378 958

Website

Contact the organisation
<table>
<thead>
<tr>
<th>Beneficiaries (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinik Max Planck Institut für Psychiatrie</td>
</tr>
<tr>
<td>Germany</td>
</tr>
<tr>
<td>EU contribution</td>
</tr>
<tr>
<td>€ 2 378 958</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>Hofgartenstrasse 8</td>
</tr>
<tr>
<td>80539 Muenchen</td>
</tr>
<tr>
<td>Activity type</td>
</tr>
<tr>
<td>Private for-profit entities</td>
</tr>
<tr>
<td>(excluding Higher or Secondary Education Establishments)</td>
</tr>
<tr>
<td>Website</td>
</tr>
<tr>
<td>Contact the organisation</td>
</tr>
</tbody>
</table>

Last update: 14 July 2017
Record number: 210974

Permalink: https://cordis.europa.eu/project/id/741322

© European Union, 2020