Bio-compatible electrostrictive smart materials for future generation of medical micro-electro-mechanical systems

Fact Sheet

Project information

BioWings

Grant agreement ID: 801267

[Project website](#)

Status

Ongoing project

Start date

1 June 2018

End date

31 May 2022

Funded under:

H2020-EU.1.2.1.

Overall budget:

€ 2 995 855,75

EU contribution:

€ 2 995 855,75

Coordinated by:

DANMARKS TEKNISKE UNIVERSITET

Denmark

Objective

Demographic trends, such as the rapid growth and ageing of the world population, are putting pressure on global healthcare systems, increasing the demand for smart, effective and affordable biomedical systems. Micro-Electro-Mechanical Systems (MEMS) are key components of such biomedical systems, enabling miniaturised devices with diagnostic, prognostic and therapeutic functionalities. Although these systems are poised to revolutionize medical diagnostics and treatment approaches, the slow progress in the development of biocompatible actuator materials is still hindering this industry, preventing a host of new biomedical devices to enter the mainstream market. BioWings proposes to solve this deadlock through the implementation of a completely new class of smart actuating materials to be integrated in biocompatible MEMS. This family of materials is based on highly defective cerium oxides, which recently displayed radically different properties compared to existing ones: 1. They are non-toxic and environmentally friendly, unlike the current lead-based actuators; 2. They show exceptionally high and still uncapped electrostrictive response under moderate electric fields, enabling low power consumption devices; 3. They are fully compatible with silicon-based technologies and many other substrates, including metals and polymers. To fully explore the potential of these materials, foundational knowledge must still be generated on both the basic physical mechanisms and the manufacturing process. To reach this, BioWings focuses on: 1. Understanding, predicting, and controlling the mechanism underlying the unparalleled electrostrictive behaviour of highly defective oxides, by unveiling the effects of the microstructure, as well as the type and
concentration of dopants; 2. Identifying a methodology for controlling the electromechanical properties of such materials, using facile manufacturing processes on bio-compatible substrates and electrodes, exploring the scale limit of the device/materials, thus opening up a new path that solves important manufacturing issues in advanced electronics industry; 3. Proving the concept by integrating ceria-based electrostrictors into Bio-MEMS with diverse architectures and acoustofluidic medical blood samples preparation chips.

Such results will be pursued by a multidisciplinary group of academic, industrial and medical partners, who will lay the foundations for a new paradigm in a new bio-compatible and environmentally friendly actuator smart materials design and implementation, which will have considerable impact on the scientific, medical and industrial community.

Field of Science

/natural sciences/chemical sciences/inorganic chemistry/inorganic compounds

/natural sciences/chemical sciences/polymer science

/social sciences/economics and business/business and management/commerce

/natural sciences/chemical sciences/inorganic chemistry/metals

Programme(s)

H2020-EU.1.2.1. - FET Open

Topic(s)

FETOPEN-01-2016-2017 - FET-Open research and innovation actions

Call for proposal

H2020-FETOPEN-1-2016-2017

See other projects for this call

Funding Scheme

RIA - Research and Innovation action

Coordinator
<table>
<thead>
<tr>
<th>Institution</th>
<th>EU Contribution</th>
<th>Activity type</th>
<th>Address</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANMARKS TEKNISKE UNIVERSITET</td>
<td>€ 1 021 293,75</td>
<td>Higher or Secondary Education</td>
<td>Anker Engelundsvej 1 Bygning 101 A</td>
<td>Denmark</td>
</tr>
<tr>
<td>WEIZMANN INSTITUTE OF SCIENCE</td>
<td>€ 378 750</td>
<td>Higher or Secondary Education</td>
<td>Herzl Street 234</td>
<td>Israel</td>
</tr>
<tr>
<td>ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE</td>
<td>€ 248 125</td>
<td>Higher or Secondary Education</td>
<td>Batiment Ce 3316 Station 1 1015 Lausanne</td>
<td>Switzerland</td>
</tr>
<tr>
<td>LUNDS UNIVERSITET</td>
<td>€ 619 250</td>
<td>Higher or Secondary Education</td>
<td>Paradisgatan 5c</td>
<td>Sweden</td>
</tr>
<tr>
<td>Organisation</td>
<td>EU Contribution</td>
<td>Address</td>
<td>Activity type</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>---------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>PIEMACS SARL</td>
<td>€ 316 000</td>
<td>Epfl Innovation Park, Batiment C 1015 Lausanne</td>
<td>Private for-profit entities (excluding Higher or Secondary Education Establishments)</td>
<td></td>
</tr>
<tr>
<td>ACOUSORT AB</td>
<td>€ 179 937</td>
<td>Medicon Village 223 81 Lund</td>
<td>Private for-profit entities (excluding Higher or Secondary Education Establishments)</td>
<td></td>
</tr>
<tr>
<td>DAY ONE SRL</td>
<td>€ 232 500</td>
<td>Viale Dell Oceano Atlantico 18 00144 Rome</td>
<td>Private for-profit entities (excluding Higher or Secondary Education Establishments)</td>
<td></td>
</tr>
</tbody>
</table>