Neutron-rich, EXotic, heavy nuclei produced in multi-nucleon Transfer reactions

Fact Sheet

Project Information

NEXT

Grant agreement ID: 803740

Status
Ongoing project

Funded under
H2020-EU.1.1.

Overall budget
€ 1 670 323

EU contribution
€ 1 670 323

Hosted by
RIJKSUNIVERSITEIT
GRONINGEN

Netherlands

Objective

The heaviest element which has been found in nature is uranium with 92 protons. So far, the elements up to atomic number 118 (oganesson) have been discovered in the laboratory. All transuranium elements are radioactive and their production rates decrease with increasing number of protons. An Island of Stability, where the nuclei have relatively long half-lives, is predicted at the neutron number 182 and, depending on the theoretical model, at the proton number 114, 120 or 126. Current experimental techniques do not allow to go so far to the neutron-rich side close to the Island of Stability.

The observation of gravitational waves as well as electromagnetic waves originating from a neutron star merger has been published on October 16, 2017 and is a first proof of the nucleosynthesis of heavy elements in the r-process. It still remains an open question if superheavy nuclei have been formed in our universe. To answer these questions, we need insight into the nuclear properties of the heaviest elements.
these questions, we need insight into the nuclear properties of the heaviest elements and how these properties evolve when one moves toward to the neutron-rich side on the nuclear chart.

In the NEXT project, I will set out to discover new, Neutron-rich, EXotic heavy nuclei using multi-nucleon Transfer reactions. I will measure their masses and, thus, pin down the ground state properties of these nuclei. These studies provide insight into the evolution of nuclear shells in the heavy element region. Furthermore, I will measure the fission half-lives of these isotopes. In order to realize the NEXT project, I will built a novel spectrometer, which is a combination of a solenoid separator and Multi-Reflection Time-of-Flight Mass Spectrometer.

The broad experience in heavy element research and mass measurements that I have acquired over the years, and the unique infrastructure at my home institute that houses the AGOR accelerator, makes it so that I am ideally placed to start and lead the NEXT project.

Field of science

- natural sciences/physical sciences/astronomy/observational astronomy/gravitational waves
- natural sciences/chemical sciences/inorganic chemistry/inorganic compounds
- natural sciences/physical sciences/astronomy/stellar astronomy/neutron star

Programme(s)

Topic(s)

Call for proposal

ERC-2018-STG

Funding Scheme

ERC-STG - Starting Grant

Host institution

RIJKSUNIVERSITEIT GRONINGEN

Address

Broerstraat 5
9712CP Groningen
Netherlands

Activity type

Higher or Secondary

Education Establishments

EU contribution

€ 1 670 323
RIJKSUNIVERSITEIT GRONINGEN

Netherlands

EU contribution
€ 1 670 323

Address
Broerstraat 5
9712CP Groningen

Activity type
Higher or Secondary Education Establishments

Website
Contact the organisation

Last update: 19 March 2020
Record number: 219890

Permalink: https://cordis.europa.eu/project/id/803740/

© European Union, 2020