Objetivo
Advances in molecular biology have significantly increased the understanding of the biology of different diseases. Nevertheless, these advances are not fully translated yet into improved treatments for patients, specifically for what pertains to the oncological disorders. One of main reasons for this shortcoming is the lack of reliable in vivo models that accurately predict drug efficacy and toxicity, so to translate these results from preclinical studies to the clinic. In present project we address the major challenge of the preclinical stage in drug development, by offering a proprietary Multi-Organ-On-Device (MOOD), being an advanced fluidic multi-chamber bioreactor, a 3D model of breast cancer tissue cultured onto a membrane mimicking the blood vessel barrier, which jointly reproduce the physio mimetic environment of the cancer disease. In this way, MOOD technology enables the execution of standard pre-clinical assays, such as tumor cell migration and intravasation, drug efficacy and toxicity assays, thus bypassing unreliable, costly and ethically relevant mice studies. The validation of the MOOD device paves the way for the replacement, reduction and refinement (3Rs) of animal studies on global scale, allowing for dramatic cost reduction in the pre-clinical stage and for accelerated time to market for pharmaceutical companies and CROs. The objectives of this feasibility study will be the deep understanding of the market and its technological and economic requirements, so to properly stream line the industrialization of MOOD platform. We expect our MOOD technology to exert a disruptively beneficial impact on drug development process and thus, human health and national economies.
Ámbito científico
- medical and health sciencesbasic medicinepharmacology and pharmacydrug discovery
- engineering and technologyenvironmental biotechnologybioremediationbioreactors
- medical and health sciencesclinical medicineoncologybreast cancer
- medical and health sciencesbasic medicineimmunologyimmunotherapy
- natural sciencesbiological sciencesmolecular biology
Programa(s)
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-SMEInst-2018-2020-1
Régimen de financiación
SME-1 - SME instrument phase 1Coordinador
16121 Genova
Italia
Organización definida por ella misma como pequeña y mediana empresa (pyme) en el momento de la firma del acuerdo de subvención.