Projektbeschreibung
Algebraische Lösungen für Abzählungsprobleme in reellen und komplexen Geometrien
Die abzählende Geometrie, das heißt, der Bereich der Mathematik, der sich damit befasst, die Anzahl an Lösungen für geometrische Probleme zu bestimmen, analysiert geometrische Probleme, indem numerische Invarianten berechnet werden. Dieser Zweig der algebraischen Geometrie konnte erfolgreich Lösungen für Abzählprobleme in Geometrien über den komplexen Zahlen liefern. Das EU-finanzierte Projekt QUADAG setzt die algebraische Geometrie und die motivische Homotopietheorie ein, um neue, rein algebraische Verfahren zum Umgang mit Abzählproblemen über den reellen Zahlen, den rationalen Zahlen und endlichen Körpern entwickeln. Das Projekt wird auf vorheriger Arbeit des Forschers aufbauen, die zur Entwicklung eines rein algebraischen Ansatzes zur Bewältigung geometrischer Abzählungsprobleme geführt hat, und auf einheitliche Weise gleichermaßen komplexe und reelle Lösungen beleuchten.
Ziel
Enumerative geometry, the mathematics of counting numbers of solutions to geometric problems, and its modern descendents, Gromov-Witten theory, Donaldson-Thomas theory, quantum cohomology and many other related fields, analyze geometric problems by computing numerical invariants, such as intersection numbers or degrees of characteristic classes. This essentially algebraic approach has been successful mainly in the study of problems over the complex numbers and other algebraically closed fields. There has been progress in attacking enumerative problems over the real numbers; the methods are mainly non-algebraic. Arithmetic content underlying the numerical invariants is hidden when analyzed by these non-algebraic methods. Recent work by the PI and others has opened the door to a new, purely algebraic approach to enumerative geometry that recovers results in both the complex and real cases in one package and reveals this arithmetic content over arbitrary fields. Building on these new developments, the goals of this proposal are, firstly, to use motivic homotopy theory, algebraic geometry and symplectic geometry to develop new purely algebraic methods for handling enumerative problems over an arbitrary field, secondly, to apply these methods to central enumerative problems, recovering and unifying known results over both C and R and thirdly, to use this new approach to reveal the hidden arithmetic nature of enumerative problems. In 2009 R. Pandharipande and I applied algebraic cobordism to prove the degree zero MNOP conjecture in Donaldson-Thomas theory. More recently, I have developed several aspects of the theory of quadratic invariants using motivic homotopy theory.
Wissenschaftliches Gebiet
Programm/Programme
Thema/Themen
Finanzierungsplan
ERC-ADG - Advanced GrantGastgebende Einrichtung
45141 Essen
Deutschland