Description du projet
Des solutions algébriques aux problèmes énumératifs en géométrie réelle et complexe
La géométrie énumérative, qui consiste à compter le nombre de solutions à des problèmes de géométrie, analyse les problèmes géométriques en calculant des invariants numériques. Cette branche de la géométrie algébrique a fourni avec succès des solutions aux problèmes de comptage en géométrie sur les nombres complexes. Le projet QUADAG, financé par l’UE, utilise la géométrie algébrique et la théorie de l’homotopie motivique pour développer de nouvelles méthodes purement algébriques permettant de traiter les problèmes de dénombrement sur les nombres réels, les nombres rationnels ou les corps finis. Le projet s’appuiera sur les travaux antérieurs fructueux du chercheur qui a conduit au développement d’une approche purement algébrique pour traiter les problèmes de géométrie énumérative, en mettant en lumière les solutions complexes et réelles d’une manière unifiée.
Objectif
Enumerative geometry, the mathematics of counting numbers of solutions to geometric problems, and its modern descendents, Gromov-Witten theory, Donaldson-Thomas theory, quantum cohomology and many other related fields, analyze geometric problems by computing numerical invariants, such as intersection numbers or degrees of characteristic classes. This essentially algebraic approach has been successful mainly in the study of problems over the complex numbers and other algebraically closed fields. There has been progress in attacking enumerative problems over the real numbers; the methods are mainly non-algebraic. Arithmetic content underlying the numerical invariants is hidden when analyzed by these non-algebraic methods. Recent work by the PI and others has opened the door to a new, purely algebraic approach to enumerative geometry that recovers results in both the complex and real cases in one package and reveals this arithmetic content over arbitrary fields. Building on these new developments, the goals of this proposal are, firstly, to use motivic homotopy theory, algebraic geometry and symplectic geometry to develop new purely algebraic methods for handling enumerative problems over an arbitrary field, secondly, to apply these methods to central enumerative problems, recovering and unifying known results over both C and R and thirdly, to use this new approach to reveal the hidden arithmetic nature of enumerative problems. In 2009 R. Pandharipande and I applied algebraic cobordism to prove the degree zero MNOP conjecture in Donaldson-Thomas theory. More recently, I have developed several aspects of the theory of quadratic invariants using motivic homotopy theory.
Champ scientifique
Programme(s)
Thème(s)
Régime de financement
ERC-ADG - Advanced GrantInstitution d’accueil
45141 Essen
Allemagne