Opis projektu
Algebraiczne rozwiązania problemów wyliczeniowych w geometrii nad ciałem liczb rzeczywistych i zespolonych
Geometria wyliczeniowa, nauka zajmująca się zliczaniem liczby rozwiązań problemów geometrycznych, służy do analizy tych problemów poprzez obliczanie niezmienników liczbowych. Ta gałąź geometrii algebraicznej zdołała już dostarczyć rozwiązań w zakresie obliczania problemów w geometrii nad ciałem liczb zespolonych. Finansowany ze środków UE projekt QUADAG wykorzystuje metody geometrii algebraicznej i teorię homotopii motywów do opracowania nowych, czysto algebraicznych metod rozwiązywania problemów wyliczeniowych nad ciałem liczb rzeczywistych, wymiernych rozsądnych lub pól skończonych. Projekt będzie się zasadzać na wcześniejszych, zakończonych powodzeniem pracach badacza, które doprowadziły do opracowania czysto algebraicznego podejścia do rozwiązywania problemów geometrii wyliczeniowej, pozwalając spojrzeć na rozwiązania zarówno rzeczywiste, jak i zespolone w spójny sposób.
Cel
Enumerative geometry, the mathematics of counting numbers of solutions to geometric problems, and its modern descendents, Gromov-Witten theory, Donaldson-Thomas theory, quantum cohomology and many other related fields, analyze geometric problems by computing numerical invariants, such as intersection numbers or degrees of characteristic classes. This essentially algebraic approach has been successful mainly in the study of problems over the complex numbers and other algebraically closed fields. There has been progress in attacking enumerative problems over the real numbers; the methods are mainly non-algebraic. Arithmetic content underlying the numerical invariants is hidden when analyzed by these non-algebraic methods. Recent work by the PI and others has opened the door to a new, purely algebraic approach to enumerative geometry that recovers results in both the complex and real cases in one package and reveals this arithmetic content over arbitrary fields. Building on these new developments, the goals of this proposal are, firstly, to use motivic homotopy theory, algebraic geometry and symplectic geometry to develop new purely algebraic methods for handling enumerative problems over an arbitrary field, secondly, to apply these methods to central enumerative problems, recovering and unifying known results over both C and R and thirdly, to use this new approach to reveal the hidden arithmetic nature of enumerative problems. In 2009 R. Pandharipande and I applied algebraic cobordism to prove the degree zero MNOP conjecture in Donaldson-Thomas theory. More recently, I have developed several aspects of the theory of quadratic invariants using motivic homotopy theory.
Dziedzina nauki
Program(-y)
Temat(-y)
System finansowania
ERC-ADG - Advanced GrantInstytucja przyjmująca
45141 Essen
Niemcy