Descripción del proyecto
Comportamiento molecular en interfaces de electrodos
La electrónica molecular es el estudio y aplicación de elementos moleculares para la fabricación de componentes electrónicos. Una mejor comprensión de cómo interactúan las moléculas con el mundo macroscópico impulsará nuevos dispositivos de altas prestaciones. Financiado por el programa Marie Skłodowska Curie, el proyecto TECh-MoDE desarrollará la primera plataforma híbrida para detectar las propiedades espectro-electroquímicas de una unión molecular. Esta plataforma dual se basará en una rotura de uniones basada en un microscopio de efecto túnel y una espectroscopia Raman de punta mejorada. Permitirá a los investigadores estudiar la riqueza estructural de las uniones supramoleculares y los efectos de la activación periódica electroquímica de los cables monomoleculares de moléculas redox. Los resultados ayudarán a los investigadores a diseñar interfaces electrodos/moléculas que mejoren la eficiencia de los dispositivos electrónicos.
Objetivo
To push forward Molecular Electronics, a complete understanding of the nanoscale molecule/electrode interface is a must, since the interactions, structure and electronic characteristics of such interfaces define their physicochemical properties, thus their functionalities. This knowhow will enable exploiting these interfaces as the building blocks for the next generation of high performance and sustainable electronic devices. With the aim to decipher the abovementioned big unknowns, TECh-MoDE will develop the first hybrid platform with spectro-electrochemical detection capabilities of individual molecules under ambient conditions: the EC-TERS/Blinking, which will be based in the communion of two platforms: first, the Scanning Tunneling Microscope Break-Junction will allow to capture the tunnelling current through an individual bridged molecule between two electrodes of Tunneling nanoscale gap, enabling the electrical signatures of a single-molecule electrical contact. Second, the TERS, a high ultrasensitive non-destructive spectroscopic method, will provide spectroscopic features of the trapped molecule under strict electrochemical control. The single-molecule nature of this new platform provides a detailed insight into the molecular junction structure by simultaneously capturing current flow and vibrational spectra during the spontaneous formation of a molecular junction. This state-of-the-art dual-platform will allow to study, for the first time, the evolution of spectro-electrochemical characteristics in a molecular junction. This novel platform will be then exploited to explore several key structural aspects that remain unknown during the formation of single-molecule electrical contacts: (1) the observed multiple contact configurations in most common covalent anchoring chemistry, (2) the structural richness in supramolecular junctions and (3) the electrochemical gating effects of single-molecule wires of redox (bio)molecules.
Ámbito científico
Programa(s)
Régimen de financiación
MSCA-IF-EF-ST - Standard EFCoordinador
80539 Munchen
Alemania