Descripción del proyecto
Una nueva investigación para arrojar luz sobre la codificación de información en la gravedad cuántica
El descubrimiento de ondas gravitatorias que emanan de la fusión de agujeros negros confirmó de forma espectacular la teoría general de la relatividad de Einstein. Sin embargo, los físicos todavía están desconcertados sobre el papel de la mecánica cuántica según la paradoja de la información de los agujeros negros. Cuando los agujeros negros emiten una pequeña cantidad de calor (radiación de Hawking), pierden masa en el proceso y, en última instancia, se evaporan. Durante esta evaporación, la información debe escaparse de los agujeros negros para evitar incumplir un principio central de la mecánica cuántica. El proyecto financiado con fondos europeos HoloHair tiene como objetivo arrojar luz sobre la forma en que los agujeros negros codifican, almacenan y emiten información y si la información en gravedad cuántica en espacio-tiempo asintónicamente plano se codifica a través de un principio holográfico.
Objetivo
LIGO’s detection of merging black holes was a spectacular confirmation of general relativity (GR), yet it remains an open question whether black holes obey the same rules of quantum mechanics (QM) as all other known objects in the universe. Black holes are objects in GR which are known to have a vast entropy, but when QM is applied they evaporate by emission of Hawking radiation which carries no information about their microstates - this is the black hole information loss paradox which has evaded a resolution for over 40 years. The holographic AdS/CFT duality has provided indirect evidence that black holes are quantum mechanical systems that do not destroy information but the arguments are limited in scope to highly charged and/or spinning black holes and do not explain the gravitational dynamics near the horizon. To resolve the information paradox we need a better understanding of the information encoding, storage and flow between the horizon and the far asymptotic region where Hawking radiation escapes to, and more generally of how information is encoded in quantum gravity in asymptotically flat Minkowski spacetime. Achieving this is the overarching goal of this proposal. The novel research I propose combines two emergent ideas which could provide a paradigm changing picture of how black holes encode information: One is based on a thorough understanding of subtle long-distance effects in asymptotically flat spacetimes which give rise to “soft hair” and a horizon memory for black holes. The other is based on a mechanism in string theory, the most promising quantum completion of Einstein's theory of GR, which gives rise to horizon-scale microstructure, known as “fuzzballs”. The ground-breaking nature of this proposal is to bridge these two different approaches to develop a powerful new programme for solving the information paradox.
Ámbito científico
Programa(s)
Régimen de financiación
ERC-STG - Starting GrantInstitución de acogida
1012WX Amsterdam
Países Bajos