Description du projet
De nouvelles recherches pour faire la lumière sur le codage de l’information en gravité quantique
La découverte d’ondes gravitationnelles émanant de la fusion de trous noirs a corroboré de façon spectaculaire la théorie générale de la relativité d’Einstein. Toutefois, les physiciens restent perplexes quant au rôle de la mécanique quantique telle qu’elle est résumée par le paradoxe de l’information d’un trou noir. L’émission d’une petite quantité de chaleur (rayonnement de Hawking) par les trous noirs provoque une diminution de leur masse et, à terme, leur évaporation. Pendant le processus d’évaporation d’un trou noir, l’information doit s’en échapper, afin d’éviter de violer un principe de base de la mécanique quantique. Le projet HoloHair, financé par l’UE, entend faire la lumière sur la manière dont les trous noirs codent, stockent et émettent l’information, et découvrir si, en gravité quantique dans l’espace-temps asymptotiquement plat, l’information est codée via un principe holographique.
Objectif
LIGO’s detection of merging black holes was a spectacular confirmation of general relativity (GR), yet it remains an open question whether black holes obey the same rules of quantum mechanics (QM) as all other known objects in the universe. Black holes are objects in GR which are known to have a vast entropy, but when QM is applied they evaporate by emission of Hawking radiation which carries no information about their microstates - this is the black hole information loss paradox which has evaded a resolution for over 40 years. The holographic AdS/CFT duality has provided indirect evidence that black holes are quantum mechanical systems that do not destroy information but the arguments are limited in scope to highly charged and/or spinning black holes and do not explain the gravitational dynamics near the horizon. To resolve the information paradox we need a better understanding of the information encoding, storage and flow between the horizon and the far asymptotic region where Hawking radiation escapes to, and more generally of how information is encoded in quantum gravity in asymptotically flat Minkowski spacetime. Achieving this is the overarching goal of this proposal. The novel research I propose combines two emergent ideas which could provide a paradigm changing picture of how black holes encode information: One is based on a thorough understanding of subtle long-distance effects in asymptotically flat spacetimes which give rise to “soft hair” and a horizon memory for black holes. The other is based on a mechanism in string theory, the most promising quantum completion of Einstein's theory of GR, which gives rise to horizon-scale microstructure, known as “fuzzballs”. The ground-breaking nature of this proposal is to bridge these two different approaches to develop a powerful new programme for solving the information paradox.
Champ scientifique
Programme(s)
Thème(s)
Régime de financement
ERC-STG - Starting GrantInstitution d’accueil
1012WX Amsterdam
Pays-Bas