Opis projektu
Nowe badanie dotyczące kodowania informacji w grawitacji kwantowej
Odkrycie fal grawitacyjnych emitowanych przez zderzające się czarne dziury stanowiło spektakularne potwierdzenie ogólnej teorii względności Einsteina, jednak fizycy nadal nie są w stanie wyjaśnić roli mechaniki kwantowej w zakresie paradoksu informacyjnego czarnych dziur. Zjawisko to polega na tym, że czarne dziury wypromieniowują niewielką ilość ciepła (promieniowanie Hawkinga), tracąc w ten sposób masę i w końcu całkowicie wyparowując. Część naukowców przypuszcza, że w trakcie procesu „parowania” z czarnej dziury muszą wydostawać się informacje, by nie doszło do naruszenia jednej z głównych zasad mechaniki kwantowej. Finansowany przez Unię Europejską projekt HoloHair ma na celu zbadanie, w jaki sposób czarne dziury kodują, przechowują i emitują informacje, oraz ustalenie, czy w grawitacji kwantowej informacje w asymptotycznie płaskiej czasoprzestrzeni są kodowane przez zasadę holograficzną.
Cel
LIGO’s detection of merging black holes was a spectacular confirmation of general relativity (GR), yet it remains an open question whether black holes obey the same rules of quantum mechanics (QM) as all other known objects in the universe. Black holes are objects in GR which are known to have a vast entropy, but when QM is applied they evaporate by emission of Hawking radiation which carries no information about their microstates - this is the black hole information loss paradox which has evaded a resolution for over 40 years. The holographic AdS/CFT duality has provided indirect evidence that black holes are quantum mechanical systems that do not destroy information but the arguments are limited in scope to highly charged and/or spinning black holes and do not explain the gravitational dynamics near the horizon. To resolve the information paradox we need a better understanding of the information encoding, storage and flow between the horizon and the far asymptotic region where Hawking radiation escapes to, and more generally of how information is encoded in quantum gravity in asymptotically flat Minkowski spacetime. Achieving this is the overarching goal of this proposal. The novel research I propose combines two emergent ideas which could provide a paradigm changing picture of how black holes encode information: One is based on a thorough understanding of subtle long-distance effects in asymptotically flat spacetimes which give rise to “soft hair” and a horizon memory for black holes. The other is based on a mechanism in string theory, the most promising quantum completion of Einstein's theory of GR, which gives rise to horizon-scale microstructure, known as “fuzzballs”. The ground-breaking nature of this proposal is to bridge these two different approaches to develop a powerful new programme for solving the information paradox.
Dziedzina nauki
Program(-y)
Temat(-y)
System finansowania
ERC-STG - Starting GrantInstytucja przyjmująca
1012WX Amsterdam
Niderlandy