Description du projet
Un algorithme d’apprentissage automatique pour la prédiction précoce des infections postopératoires
Près de 25 % des patients opérés en Europe développent une complication postopératoire sous la forme d’une infection. La société néerlandaise Healthplus.ai développe un algorithme avancé d’apprentissage automatique pour prédire les infections postopératoires cinq jours avant le diagnostic de l’équipe médicale, avec une précision de 80 %. Le projet PERISCOPE, financé par l’UE, vise à élargir l’ensemble de données et à atteindre une précision de plus de 90 % cinq jours avant l’apparition de symptômes d’infection potentiels chez le patient. Le projet se concentre également sur un modèle et un plan d’affaires durables, sur les partenariats ainsi que sur les questions juridiques et réglementaires.
Objectif
Some 50M people need to undergo inpatient surgery per year in Europe Yet, despite intensive research efforts, around 25% of surgical patients will experience a complicated recovery with some type of infection on their path: pneumonia, urinary tract infections, wound infections, abdominal infections and bacteremia. Of course, the risk varies depending on the patient and the procedure, but despite efforts like biomarkers, risk scores or devices for early warning/detection, and preventive methods like ‘Enhanced Recovery After Surgery’ (ERAS), the overall risk still leaves almost one in four patients to get an infection within 30-days after surgery.
If we look beyond the personal suffering of patients and relatives, the cost of an infectious complication is estimated at around €10,000 per patient. Hence, total cost in only the Netherlands alone can be calculated at up to €3.5B per year, as approximately 350,000 Dutch patients go through an infection after surgery yearly. Total EU costs are even more shocking at an estimated €125B per year.
Healthplus.ai R&D BV is currently developing an advanced machine-learning (ML) algorithm (TRL level 4) to predict post-operative infections 5 days prior to the average medical team diagnosis, currently already achieving an accuracy of 80%. Through increasing the dataset and taking on more types of data, the ultimate goal is to ultimately achieve >90% accuracy at 5 days before the infectious symptoms on average are actually detected within the patient.
In this proposal, we seek how to go beyond the proven technical feasibility and assess channels to deliver the tool in a safe, affordable and scalable way through third-party vendors with a sustainable business model and plan with the right partnerships and intensify these relationships. Also, potential legal and regulatory issues with EU expansion will be identified, investigated and suitable measures outlined.
Champ scientifique
Programme(s)
Régime de financement
SME-1 - SME instrument phase 1Coordinateur
1017 AZ AMSTERDAM
Pays-Bas
L’entreprise s’est définie comme une PME (petite et moyenne entreprise) au moment de la signature de la convention de subvention.