Project Information

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SPM-RS</td>
<td>Grant agreement ID:</td>
<td>DOI</td>
</tr>
<tr>
<td></td>
<td>895406</td>
<td>10.3030/895406</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funded under</td>
<td>EXCELLENT SCIENCE -</td>
<td>Total cost</td>
</tr>
<tr>
<td></td>
<td>Marie Skłodowska-Curie</td>
<td>€ 202 158,72</td>
</tr>
<tr>
<td>Actions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EU contribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>€ 202 158,72</td>
</tr>
<tr>
<td>Project terminated</td>
<td>on 22 September 2021</td>
<td></td>
</tr>
<tr>
<td>Start date</td>
<td>15 September 2021</td>
<td>End date</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 September 2023</td>
</tr>
<tr>
<td>Coordinated by</td>
<td>NORGES TEKNISKT</td>
<td>NATURVITENSKAPELIGE</td>
</tr>
<tr>
<td></td>
<td>UNIVERSITET NTNU</td>
<td>UNIVERSITET NTNU</td>
</tr>
<tr>
<td></td>
<td>Norway</td>
<td>Norway</td>
</tr>
</tbody>
</table>

Project description

New technology to improve efficiency of reservoir simulation performances

Oil reservoirs require advanced techniques to recover oil. Recovery from hydrocarbon reservoirs requires three steps: the first results from the internal reservoir energy, the second involves the injection of water or gas to support the pressure, and the third is the process to extract the non-recovered oil. Reservoir simulations are usually executed to assess the performance of the applied methods. However, these simulations are time-consuming as several runs are required to achieve optimal results. The EU-funded SPM-RS project will develop an innovative
strategy to create user-friendly smart proxy models for significantly reducing the runtime in reservoir simulation performances. The project will combine advanced methods including statistics, optimisation and data-driven techniques.

Fields of science

- natural sciences > computer and information sciences > data science
- engineering and technology > environmental engineering > energy and fuels > renewable energy
- natural sciences > chemical sciences > organic chemistry > hydrocarbons

Keywords

- Reservoir simulation
- Optimization
- Data-driven techniques
- Smart proxy
- Enhanced recovery

Programme(s)

- H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
- H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility

Topic(s)

- MSCA-IF-2019 - Individual Fellowships

Call for proposal

- H2020-MSCA-IF-2019

See other projects for this call

Funding Scheme

- MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Coordinator

2 of 3
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU

Net EU contribution
€ 202 158,72

Address
Hogskoleringen 1
7491 Trondheim
Norway

Region
Norge > Trøndelag > Trøndelag

Links
Contact the organisation Website Participation in EU R&I programmes HORIZON collaboration network

Other funding
€ 0,00

EC signature date 28 April 2020
Last update: 24 July 2023

Permalink: https://cordis.europa.eu/project/id/895406

European Union, 2023