European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Structural and thermophysical properties of quantum fluids adsorbed on nanostructured surfaces

Descripción del proyecto

Modelización de la adsorción de fluidos cuánticos en superficies nanoestructuradas

El proyecto QFluidsNano, financiado con fondos europeos, tiene previsto desarrollar herramientas de computación avanzadas para realizar cálculos precisos de mecánica cuántica de la estructura y las propiedades termofísicas de fluidos atómicos y moleculares adsorbidos en superficies nanoestructuradas. El proyecto aplicará la teoría del funcional de la densidad de líquidos para modelizar el movimiento nuclear de partículas y evaluar el potencial de determinados nanomateriales (marcos organometálicos y marcos orgánicos covalentes) para almacenar hidrógeno y separar isótopos a través del tamizado cuántico. Las simulaciones del funcional de la densidad propuestas ayudarán a los investigadores a sintetizar, optimizar y probar nanocomponentes a un coste computacional relativamente bajo.

Objetivo

The general aim of this project is the development of advanced computational models that enable affordable yet accurate quantum mechanical calculations of the structure and thermophysical properties of atomic and molecular fluids adsorbed on nanostructured surfaces.The proposed method is based on the liquid density functional theory (to treat the nuclear quantum dynamics) with the first principle evaluation of the interaction forces employing state-of-the-art electronic structure methods. These models will be subsequently applied to the computational investigation of macroscopic quantum effects on the adsorption isotherms, the isotopic selectivity on adsorption, particle diffusion, etc, of helium and hydrogen fluids adsorbed in nanoporous materials. We will focus on the characterization (via computational screening) of the influence of the structural and electronic properties (e.g. the size and geometry of the pores, the specific surface area, the topology of the electronic states) on the capacities of nanomaterials for hydrogen storage and isotope separation via quantum sieving.
The density functional simulations will provide a realistic representation of the nuclear motion underlying storage and sieving phenomena in the target nanomaterials (e.g. metal- and covalent-organic frameworks), and accurate estimations of strutural and thermodynamics properties of the adsorbed fluid, in situations where the computational cost of the standard numerical schemes becomes prohibitive. The insight provided by these calculations can be used to guide the experimental efforts on the investigation of the target systems, and on their applicability in the design of more efficient nanodevices. Consequently, they may lead to significant savings of energy and of natural resources, associated to the design, synthesis, optimization and testing of nanocomponents.

Coordinador

UNIVERSITE PAUL SABATIER TOULOUSE III
Aportación neta de la UEn
€ 196 707,84
Dirección
ROUTE DE NARBONNE 118
31062 Toulouse Cedex 9
Francia

Ver en el mapa

Región
Occitanie Midi-Pyrénées Haute-Garonne
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 196 707,84