Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Structural and thermophysical properties of quantum fluids adsorbed on nanostructured surfaces

Description du projet

Modéliser l’adsorption de fluides quantiques sur des surfaces nanostructurées

Le projet QFluidsNano, financé par l’UE, prévoit de développer des outils avancés pour effectuer des calculs de mécanique quantique précis concernant la structure et les propriétés thermophysiques des fluides atomiques et moléculaires adsorbés sur des surfaces nanostructurées. Le projet se servira de la théorie de la fonctionnelle de la densité des liquides pour modéliser le mouvement nucléaire des particules et évaluer le potentiel de certains nanomatériaux (structures organométalliques et organiques covalentes) en vue de leur utilisation pour le stockage d’hydrogène et la séparation des isotopes par tamisage quantique. Les simulations proposées pour la fonctionnelle de la densité aideront les chercheurs à synthétiser, optimiser et tester les nanocomposants avec un coût de calcul relativement faible.

Objectif

The general aim of this project is the development of advanced computational models that enable affordable yet accurate quantum mechanical calculations of the structure and thermophysical properties of atomic and molecular fluids adsorbed on nanostructured surfaces.The proposed method is based on the liquid density functional theory (to treat the nuclear quantum dynamics) with the first principle evaluation of the interaction forces employing state-of-the-art electronic structure methods. These models will be subsequently applied to the computational investigation of macroscopic quantum effects on the adsorption isotherms, the isotopic selectivity on adsorption, particle diffusion, etc, of helium and hydrogen fluids adsorbed in nanoporous materials. We will focus on the characterization (via computational screening) of the influence of the structural and electronic properties (e.g. the size and geometry of the pores, the specific surface area, the topology of the electronic states) on the capacities of nanomaterials for hydrogen storage and isotope separation via quantum sieving.
The density functional simulations will provide a realistic representation of the nuclear motion underlying storage and sieving phenomena in the target nanomaterials (e.g. metal- and covalent-organic frameworks), and accurate estimations of strutural and thermodynamics properties of the adsorbed fluid, in situations where the computational cost of the standard numerical schemes becomes prohibitive. The insight provided by these calculations can be used to guide the experimental efforts on the investigation of the target systems, and on their applicability in the design of more efficient nanodevices. Consequently, they may lead to significant savings of energy and of natural resources, associated to the design, synthesis, optimization and testing of nanocomponents.

Coordinateur

UNIVERSITE PAUL SABATIER TOULOUSE III
Contribution nette de l'UE
€ 196 707,84
Adresse
ROUTE DE NARBONNE 118
31062 Toulouse Cedex 9
France

Voir sur la carte

Région
Occitanie Midi-Pyrénées Haute-Garonne
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 196 707,84