Objective
To recycle through an integral approach 40 % of the polymeric material from mass consumer goods which is now practically not recycled, of which 25 % applicable in the same line of processing.
A more holistic approach was taken by industry in the development of 'complete end of life' solutions for specific products. The IBM keyboard and SONY televisions were candidate products progress with the keyboard product was analysed in depth. Dismantling such items by robot was shown to be a feasible option for those products that are standardized in construction and/or format or exist in a limited number of forms. Positive results should stimulate design for recycling/dismantling and the data base being put together should prove a valuable resource not only for the specific companies who have products under test but more widely as it includes information on generic tasks (eg unscrewing items) necessary for dismantling any product item.
Progress is being made in the use of near infrared (NIR) and laser breakdown spectroscopy (LBDS) as identification techniques, not just for polymers but for additive and nonpolymer items and, coupled with appropriate interpretational and decision making software, the outlook appears promising. Finally, application of supercritical fluid technology as a method of destruction/mineralization of problematic halogenated materials present in the candidate products was studied. Although considered as an interesting approach for the future, some doubts were raised on the need and practicality of this aspect given the nature of the specific products under investigation (degree of hazard, available alternatives) and the early stage of development of this technique (likelihood of commercialization in short and medium term).
Processes are available for glass, metals and printed circuit boards, but not for the polymeric materials. The following tasks will be carried out :
1. In pilot-plants, disassembly processes will be studied and translated into a "general concept" for the set-up of disassembly lines
2. Fast operating, non-contacting analytical systems will be developed to allow identification of the different polymeric materials (parts) and to detect the presence of heavy metals and halogenated hydro-carbons
3. Development of separation and cleaning techniques, especially focussed on removal of small parts, coatings and other contaminants
4. Establishment of the properties of the (reprocessed) materials, upgrading and determination of the applicability , also on an economic basis
5. Super-critical fluid degradation systems will be developed for materials that cannot be reused due to the level of degradation, the presence of certain additives or the actual market demand. This will be combined with pyrolysis of these materials.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering waste management waste treatment processes recycling
- natural sciences chemical sciences organic chemistry hydrocarbons
- engineering and technology materials engineering amorphous solids
- natural sciences physical sciences optics laser physics
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Data not available
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
1780 AB Den Helder
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.