CORDIS
EU research results

CORDIS

English EN
Design Technologies for Multi-scale Innovation and Integration in Post-Combustion CO2 Capture: From Molecules to Unit Operations and Integrated Plants

Design Technologies for Multi-scale Innovation and Integration in Post-Combustion CO2 Capture: From Molecules to Unit Operations and Integrated Plants

Objective

A new technology towards breakthrough innovation in solvent based post-combustion CO2 capture for enhanced energy efficiency, improved cost effectiveness and increased process sustainability and environmental benefits is developed. Advances in the identification of highly performing solvents and solvent blends in CO2 absorption, the design of innovative separation equipment internals, and the development of optimal process configurations enable a cost of approximately 16 euros per ton of CO2 captured. Such achievement can have a tremendous impact in several industrial applications such as gas-fired, coal-fired, and lignite-fired power plants as well as quick-lime production plants where solvent based post-combustion CO2 absorption can become a viable solution.
The current project adopts a holistic approach towards the fulfillment of the outlined goals accomplished through research and development at multiple levels within an integrated framework.
At the molecular level, the use of computer aided molecular design tools supported by accurate and adequately validated thermodynamic models enables the exhaustive investigation of the performance of multiple solvents and solvent blends in post-combustion CO2 absorption processes. The solvent blends are systematically assessed and rank-ordered against their performance towards the satisfaction of relevant process, economic, operability and sustainability criteria. The optimal solvents and solvent blends are expected to exhibit significantly better characteristics than currently used solvents in terms of energy requirements and overall environmental impact.
At the unit operations level, the design of innovative process configurations and column internals that are specifically tailored for the employed solvents enhance the efficiency of the absorption based separation. Advanced modeling and optimization tools in conjunction with thorough experimental procedures ensure the achievement of high mass transfer rates and optimal flow patterns.
At the plant level, the comprehensive analysis of the interactions among an existing power plant and the added solvent based post-combustion CO2 capture unit enables the optimal allocation of resources for improved energy savings and the efficient integration of the new CO2 capture process components.
Pilot plant testing of the newly developed technology under operating condition encountered in practical applications ensures process stability and consistency.
Several industrial applications in power production and chemicals manufacture are scheduled for comprehensive study, analysis, and evaluation thus resolving all related technical and engineering issues.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Coordinator

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS

Address

Charilaou Thermi Road 6 Km
57001 Thermi Thessaloniki

Greece

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 419 490

Administrative Contact

Panagiotis Seferlis (Prof.)

Participants (11)

Sort alphabetically

Sort by EU Contribution

Expand all

THE UNIVERSITY OF MANCHESTER

United Kingdom

EU Contribution

€ 189 400

UNIVERSITAET PADERBORN

Germany

EU Contribution

€ 353 900

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE

United Kingdom

EU Contribution

€ 287 554

PANNON EGYETEM

Hungary

EU Contribution

€ 175 060

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH

Switzerland

EU Contribution

€ 181 840

NATIONAL TECHNICAL UNIVERSITY OF ATHENS - NTUA

Greece

EU Contribution

€ 190 780

JULIUS MONTZ GMBH

Germany

EU Contribution

€ 90 300

PUBLIC POWER CORPORATION S.A.

Greece

EU Contribution

€ 126 811

CAO HELLAS MAKEDONIKI ASVESTOPOIIA ANONIMI ETAIRIA PARAGOGIS KAI EMPORIAS ASVESTOY KAI LOIPON DOMIKOICHIMIKON ILON

Greece

EU Contribution

€ 68 900

PROCESS DESIGN CENTER BV

Netherlands

EU Contribution

€ 150 400

Scottish Power Generation Ltd

United Kingdom

EU Contribution

€ 102 847

Project information

Grant agreement ID: 282789

Status

Closed project

  • Start date

    1 November 2011

  • End date

    31 October 2014

Funded under:

FP7-ENERGY

  • Overall budget:

    € 3 255 110

  • EU contribution

    € 2 337 282

Coordinated by:

ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS

Greece