Nano-structured High-efficiency Thermo-Electric Converters

From 2011-12-01 to 2014-11-30, closed project

Project details

<table>
<thead>
<tr>
<th>Total cost:</th>
<th>Topic(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUR 5 287 381,20</td>
<td>NMP-2010-1.2-3 - Thermoelectric energy converters based on nanotechnology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EU contribution:</th>
<th>Call for proposal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUR 3 750 000</td>
<td>FP7-NMP-2010-SMALL-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinated in:</th>
<th>Funding scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liechtenstein</td>
<td>CP-FP - Small or medium-scale focused research project</td>
</tr>
</tbody>
</table>

Objective

The NanoHiTEC project is focused on planar thermo-electric converters based on super-lattice quantum wells, which have shown on laboratory scale already a figure of merit \(ZT > 4 \) for a wide temperature range. The optimization of BiTe based layer systems as well as Si/SiGe and B4C/B9C lattices will be combined with the development of low cost/high throughput industrial deposition processes for multilayers. Direct p-n-junctions at the hot side of the converter promise further increase in performance and long term stability of the devices, but also simplified fabrication. As technologies for improved material performance multilayered nanowires and sintered nanopowders will be investigated.

A central point of NanoHiTEC is the optimization of the passive components (thermal and electrical contacts, substrates) and of new geometries for the layout of planar converters to maximize the system efficiency. In this field particular emphasis is given to the heat flow into the hot and out of the cold side of the active elements where actual devices show the most efficiency loss.

The developments in the project are backed by partners experienced in the qualification of thermo-electric materials and devices. Besides the parameters defining the thermoelectric performance - measured in a wide range of temperatures, pressures and magnetic fields - the microstructure, dopant distribution and the inner potentials will be investigated by scanning microscopy and TEM (holography).

A major part of the project is the simulation of electronic and phononic properties based on the material microstructure. Intense interaction of theoretical work and characterization results of fabricated systems will pave the way for further enhanced material efficiency and better producibility. A main target is the integration in automotive applications where the high efficiency of superlattice systems over a broad temperature range promises good adaptation to the varying conditions in vehicles.

Related information

- **Result In Brief**: Waste heat to power cars
Coordinator

EVATEC ADVANCED TECHNOLOGIES AG
IRAMALI 18
9496 BALZERS
Liechtenstein
EU contribution: EUR 206 221

Activity type: Private for-profit entities (excluding Higher or Secondary Education Establishments)

Administrative contact: Hartmut Rohrmann
Tel.: +41814038504
Contact the organisation

Participants

CENTRO RICERCHE FIAT SCPA
STRADA TORINO 50
10043 ORBASSANO
Italy
EU contribution: EUR 282 696

Activity type: Higher or Secondary Education Establishments

Administrative contact: Massimo Casali
Tel.: +39 011 9083492
Fax: +39 011 9083786
Contact the organisation

AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
CALLE SERRANO 117
28006 MADRID
Spain
EU contribution: EUR 342 652

Activity type: Higher or Secondary Education Establishments

Administrative contact: Eusebio Jiménez Arroyo
Tel.: +34915668852
Fax: +34915668913
Contact the organisation
EU contribution: EUR 240 497

EU contribution: EUR 531 535

EU contribution: EUR 370 328

EU contribution: EUR 310 340

Activity type: Private for-profit entities (excluding Higher or Secondary Education Establishments)

Administrative contact: Rita Fehle
Tel.: +498214103155
Fax: +4982141037155

Contact the organisation

Activity type: Higher or Secondary Education Establishments

Administrative contact: Miguel Marioni
Tel.: +41 44 823 4166
Fax: +41 44 823 4034

Contact the organisation

Activity type: Higher or Secondary Education Establishments

Administrative contact: Christoph Schulte
Tel.: +49 89 1205 2728
Fax: +49 89 1205 7534

Contact the organisation

Activity type: Private for-profit entities (excluding Higher or Secondary Education Establishments)

Administrative contact: Renaud De Langlade
Tel.: +33 4 74 80 40 22
Fax: +33 4 74 80 46 49

Contact the organisation
MAHLE THERMOELEKTRONIK GMBH
AUF DER HOHE 49
47059 DUIBURG
Germany
See on map

Activity type: Other

Administrative contact: Ralph Teunissen
Tel.: +49206590044710
Fax: +49 2065 900447 22

Contact the organisation

TECHNISCHE UNIVERSITAET WIEN
KARLSPLATZ 13
1040 WIEN
Austria
See on map

Activity type: Higher or Secondary Education Establishments

Administrative contact: Erasmus Langer
Tel.: +43 1 58801 36011
Fax: +43 1 58801 36099

Contact the organisation

TECHNISCHE UNIVERSITAET DRESDEN
HELMHOLTZSTRASSE 10
01069 DRESDEN
Germany
See on map

Activity type: Higher or Secondary Education Establishments

Administrative contact: Sven Kreigenfeld
Tel.: +4935146339744
Fax: +4935146339742

Contact the organisation

OC OERLIKON BALZERS AG
IRAMALI 18
9496 BALZERS
Liechtenstein
See on map

Activity type: Private for-profit entities (excluding Higher or Secondary Education Establishments)

Administrative contact: Hartmut Rohrmann
Tel.: +423 388 6049
Fax: +423 388 5426

Contact the organisation

EU contribution: EUR 466 840

EU contribution: EUR 443 200

EU contribution: EUR 307 221

EU contribution: EUR 248 470