IOLICAP

Project ID: 283077
Funded under: FP7-ENERGY

Novel IONic LIquid and supported ionic liquid solvents for reversible CAPture of CO2

From 2011-12-01 to 2016-02-29, closed project | IOLICAP Website

Project details

<table>
<thead>
<tr>
<th>Total cost:</th>
<th>Topic(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUR 5 770 719</td>
<td>ENERGY.2011.5.1-1 - High-efficiency post-combustion solvent-based capture processes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EU contribution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUR 3 978 128</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinated in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greece</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Call for proposal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP7-ENERGY-2011-1 See other projects for this call</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Funding scheme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP - Collaborative project (generic)</td>
</tr>
</tbody>
</table>

Objective

The current requirements of the Post Combustion CO2 Capture (PCC) technology are: a) Reducing the parasitic energy load, b) Effectively addressing corrosion, c) Faster absorption/stripping rates, d) Less viscosity and less use of water, e) Confronting the problem of solvent degradation and volatility. These problems pose stimulating challenges for the synthesis of new solvents, aided by detailed molecular modeling of sorbate/sorbent interactions, and for new integrative module designs that enable their effective implementation in a process environment.

In this context the IOLICAP proposal gathers expertise and skills from the domains of chemical synthesis of Ionic Liquids (ILs), molecular simulation/mechanical statistics, phase equilibrium, electrochemistry/corrosion, physicochemical/thermophysical characterisation, nanoporous materials & membrane technology and process engineering, aiming at the development and evaluation of novel Task Specific Ionic Liquid (TSILs) solvents that (a) short-term could replace the alkanolamines in currently existing PCC installations and (b) long-term would lead to the establishment of a novel CO2 capture process, based on hybrid absorption bed/membrane technology that will incorporate TSIL modified porous materials and membranes.

Task Specific Ionic Liquids exhibit enhanced CO2 capture capacity, which is above the 0.5 mol/mol limit of the currently applied amine solvents. Due to the high number of possible IL structures that will be synthesised during the project and the easy tuneability of their chemical and physical properties it is expected that loading capacities above the threshold of 1 mol/mol will be achieved. In addition, ILs are less corrosive than amines and are dissociated so there is no need for using large quantities of water. ILs are also less volatile and less sensitive to flue gas impurities a fact that ensures less need for timely injection of fresh solvent. The aforementioned properties which will be studied and verified during the project, will have a high impact on the energy intensity of the capture process since they can lead to a significant reduction of the Scrubber/Stripper units size and consequently of the parasitic energy load.

Ionic Liquid membranes are lately examined as candidates for CO2/N2 separation exhibiting performances that are above the boundary limit of a Roberson plot for this separation. IOLICAP project targets at the optimisation of the stability, selectivity (200), flux properties (1000-2000 Barrers) and production cost of Task Specific Ionic Liquid membranes and at the further enhancement of the process efficiency, through a combination of membrane technology with bed adsorption. Membrane technology is the less energy intensive candidate for CO2/N2 separation since there is no need for regeneration and constitutes a much more versatile and economically feasible technology especially for applications in energy intensive industry like the cement, steel and refineries.

Related information
Final Report Summary - IOLICAP (Novel Ionic Liquid and supported Ionic Liquid solvents for reversible CAPture of CO2)

Coordinator
"NATIONAL CENTER FOR SCIENTIFIC RESEARCH "DEMOKRITOS"
END OF PATRIARCHOU GRIGORIOU E AND 27 NEAPOLEOS STREET
15341 AGIA PARASKEVI
Greece
EU contribution: EUR 832 470

Activity type: Research Organisations

Administrative contact: George Romanos
Tel.: +302106503972
Fax: +302106511766
Contact the organisation

Participants
FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG
SCHLOSSPLATZ 4
91054 ERLANGEN
Germany
EU contribution: EUR 508 000

Activity type: Higher or Secondary Education Establishments

Administrative contact: Ulrike Hoffmann
Tel.: +49 9131 85 24043
Fax: +49 9131 85 26239
Contact the organisation

SCIENOMICS SARL
ALLEE PELLETIER DOISY 6
54600 VILLERS LES NANCY
France
EU contribution: EUR 222 900

Activity type: Private for-profit entities (excluding Higher or Secondary Education Establishments)

Administrative contact: Xenophon Krokidis
Tel.: +3315435105
Fax: +33153439292
Contact the organisation
IOLITEC IONIC LIQUIDS TECHNOLOGIES GMBH
SALZSTRASSE 184
74076 HEILBRONN
Germany

Activity type: Private for-profit entities (excluding Higher or Secondary Education Establishments)

Administrative contact: Thomas Schubert
Tel.: +497131898390
Fax: +49713189839109

Contact the organisation

THE UNIVERSITY OF MANCHESTER
OXFORD ROAD
M13 9PL MANCHESTER
United Kingdom

Activity type: Higher or Secondary Education Establishments

Administrative contact: Liz Fay
Tel.: +441612757114
Fax: +441612752445

Contact the organisation

TECHNISCHE UNIVERSITEIT EINDHOVEN
GROENE LOPER 3
5612 AE EINDHOVEN
Netherlands

Activity type: Higher or Secondary Education Establishments

Administrative contact: Laurent Nelissen
Tel.: +31040 247 3000
Fax: +31040 244 4321

Contact the organisation

PUBLIC POWER CORPORATION S.A.
CHALKOKONDYLI STREET 30
104 32 ATHINA
Greece

Activity type: Private for-profit entities (excluding Higher or Secondary Education Establishments)

Administrative contact: George Vakrinos
Tel.: +3022920 60350
Fax: +3022920 60356

Contact the organisation
EU contribution: EUR 420,098

Activity type: Private for-profit entities (excluding Higher or Secondary Education Establishments)

Administrative contact: Konstantinos Goliopoulos
Tel.: +302106919011
Fax: +302106090071

Contact the organisation

THE PETROLEUM INSTITUTE

UMM AL NAR
Abu Dhabi
United Arab Emirates

Activity type: Higher or Secondary Education Establishments

Administrative contact: Ioannis Economou
Tel.: +97126075884
Fax: +97126075200

Contact the organisation

ENDITECH ANONYMOS ETERIA MELETES KE EFARMOGES
"TECHNOLOGICAL PARK ""LEFKIPPOS'', NCSR ""DEMOKRITOS"

15310 AGHIA PARASKEVI
Greece

Activity type: Private for-profit entities (excluding Higher or Secondary Education Establishments)

Administrative contact: Maria Protopapas
Tel.: +302106561190
Fax: +302106561191

Contact the organisation

Subjects

Energy Saving

Last updated on 2017-06-21
Retrieved on 2019-08-25

Permalink: https://cordis.europa.eu/project/rcn/101378_en.html
© European Union, 2019