MAGNONMAG

Project ID: 295180
Funded under: FP7-PEOPLE

Magnetic order induced in nonmagnetic solids

From 2012-04-01 to 2016-03-31, closed project

Project details

<table>
<thead>
<tr>
<th>Total cost:</th>
<th>Topic(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUR 549 900</td>
<td>FP7-PEOPLE-2011-IRSES - Marie Curie Action "International Research Staff Exchange Scheme"</td>
</tr>
<tr>
<td>EU contribution:</td>
<td>Call for proposal:</td>
</tr>
<tr>
<td>EUR 524 700</td>
<td>FP7-PEOPLE-2011-IRSES</td>
</tr>
<tr>
<td>Coordinated in:</td>
<td>Funding scheme:</td>
</tr>
<tr>
<td>Finland</td>
<td>MC-IRSES - International research staff exchange scheme (IRSES)</td>
</tr>
</tbody>
</table>

Objective

Our aim is to establish long lasting collaboration in the frames of a research program the goal of which is to develop novel methods of control and manipulation of the magnetic degree of freedom in nominally nonmagnetic materials, in view of their potential for nanotechnology and nanoscience. The principal objective of the MagNonMag project is to bring together leading research groups in the field of nanomagnetism and establish an interdisciplinary training ground for both early stage researchers and experienced researchers, enhancing the information partnership between theoretical and experimental research groups working in physics, chemistry, material science, and nanotechnology. The project is focused on nanomagnetism – magnetism shown by some materials on a nanoscale even if magnetically inert in the bulk – a novel physical effect with a potential for the emerging spintronics technology. The MagNonMag project will study the possibility to control magnetism by various means such as introducing sp impurities and defects in nonmagnetic materials through ion bombardment, fluorination, and transmutation doping. The objects under investigation are IV group elements with the emphasis on graphite/graphene systems. Induced magnetism phenomena studied in this project have a potential to provide new effects and functionalities which are highly desirable and of great technological and economic relevance. The synergy of the scientific strength of the Russian Academy Institutes with the technological and analytical potential in the research groups in EU (Sweden, Spain, Italy) and Australia provides a valuable opportunity to study and understand novel phenomenon of induced nanomagnetism which is promising for nanotechnology applications.

Related information

<table>
<thead>
<tr>
<th>Report Summaries</th>
<th>Final Report Summary - MAGNONMAG (Magnetic order induced in nonmagnetic solids)</th>
</tr>
</thead>
</table>

Coordinator

LAPPEENRANNAN-LAHDEN TEKNILLINEN YLIOPISTO LUT
SKINNARILANKATU 34
53850 LAPPEENRANTA
Finland
EU contribution: EUR 95 400
See on map

Activity type: Higher or Secondary Education Establishments

Administrative contact: Erkki Lähderanta
Tel.: +35856216800
Contact the organisation

Participants

UNIVERSITA DEGLI STUDI DI PARMA
VIA UNIVERSITA 12
43100 PARMA
Italy
EU contribution: EUR 147 400
See on map

Activity type: Higher or Secondary Education Establishments

Administrative contact: Roberto De Renzi
Tel.: +390521905258
Fax: +390521905223
Contact the organisation

Asociacion - Centro de Investigacion Cooperativa en Nanociencias - CIC NANOGUNE
Tolosa Hiribidea 76
20018 San Sebastian
Spain
EU contribution: EUR 101 100
See on map

Activity type: Higher or Secondary Education Establishments

Administrative contact: Miguel Odriozola
Tel.: +34 943 574 000
Fax: +34 943 574 001
Contact the organisation
UMEA UNIVERSITET
UNIVERSITETOMRADET
901 87 UMEA
Sweden
See on map

Activity type: Higher or Secondary Education Establishments

Administrative contact: Tatiana Makarova
Tel.: +46 90 7869797
Fax: +46 90 7866673
Contact the organisation

Subjects
Scientific Research

Last updated on 2016-09-26
Retrieved on 2019-06-01

© European Union, 2019