CORDIS
EU research results

CORDIS

English EN

Mechanically Responsive Polymers

Objective

"“Intelligent” polymers which change their properties “on command”, that is upon exposure to a pre-defined stimulus in a highly selective and reversible manner, are of considerable academic interest and attractive for countless technologically relevant applications. Many examples of chemically, thermally, electrically, optically, or electrically responsive materials are known, but only few polymers have been studied, which respond in a useful and predictable manner to the exposure of mechanical stress.
The here-proposed program targets the design, synthesis, processing, exploration and exploitation of a radically new family of bio-inspired, mechanically responsive polymers in which mechanical stress provides the activation energy to trigger specific pre-programmed chemical reactions. These reactions, in turn, will be used to bestow polymers with unusual and previously unavailable functionalities, such as mechanical morphing, mechanically induced generation of light, mechanically controlled cell growth, auto-lubricating behavior, and the ability to release small molecules such as drugs, fragrances and antiseptics.
A three-pronged research approach is proposed. Thrust 1 will investigate carefully selected model systems with the aim to advance the predictive understanding for the relationships between the chemical structure of the mechanically responsive motifs or “mechanophores”, their connectivity with a matrix polymer, the morphology and mechanical properties of the system, and the mechanoresponse. Thrust 2 focuses on the exploration of new mechanophores and mechanochemical transduction schemes. Thrust 3 will apply the knowledge generated for the creation of novel materials that offer a wide variety of new and interesting functionalities.
The knowledge generated through these efforts will provide a broad intellectual basis for the future design, of advanced functional materials based on mechanochemical transduction schemes."
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Principal Investigator

Christoph Weder (Prof.)

Host institution

UNIVERSITE DE FRIBOURG

Address

Avenue De L Europe 20
1700 Fribourg

Switzerland

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 1 992 493,20

Principal Investigator

Christoph Weder (Prof.)

Administrative Contact

Monique Bersier (Ms.)

Beneficiaries (1)

Sort alphabetically

Sort by EU Contribution

Expand all

UNIVERSITE DE FRIBOURG

Switzerland

EU Contribution

€ 1 992 493,20

Project information

Grant agreement ID: 291490

Status

Closed project

  • Start date

    1 May 2012

  • End date

    30 April 2017

Funded under:

FP7-IDEAS-ERC

  • Overall budget:

    € 1 992 493,20

  • EU contribution

    € 1 992 493,20

Hosted by:

UNIVERSITE DE FRIBOURG

Switzerland