CORDIS
EU research results

CORDIS

English EN
DEVELOPMENT OF NANO-POROUS MATERIALS FOR THE PRODUCTION OF VACUUM INSULATION PANELS (VIPs)

DEVELOPMENT OF NANO-POROUS MATERIALS FOR THE PRODUCTION OF VACUUM INSULATION PANELS (VIPs)

Objective

Vacuum insulation panels (VIPs) offer extremely high thermal resistances properties combined with small thickness that can enhance the energy efficiency of the insulating systems and provide savings in energy consumption. They are generally made with porous core materials wrapped, under vacuum, in airtight films. In the construction of VIP, core materials play a crucial role in thermal performance and mechanical properties of the insulation system. Commonly used core material is fumed silica with nanoporous structure. Core materials with higher porosity and smaller pore size have the greater ability to maintain lower thermal conductivity. However, high product costs are the main obstacle for a broader penetration of the VIPs technology into many applications like cold appliances and building insulations. The main objective of the proposal is to develop cost effective novel nanoporous core materials that can be used as core insulation filler in VIPs, which will help for the widespread usage of this technology for applications in cold appliances and/or building insulations. The nanoporous inorganic materials will be developed using triblock self-assembled polymers (Pluronic® F127) as structure directing compounds. Pluronic forms nano-size micelles and have polar OH end groups that when assembled as a surface can provide slightly negatively charged sites for nucleation of the inorganic phase. After the coating of the nano-size polymeric micelles with the inorganic phase, a porous structure will be obtained when the polymer is removed from the inorganic-polymer composite by calcination. Then, VIP prototypes will be produced with the developed porous core materials and thermal performance at the different vacuum levels will be measured. It is aimed to develop VIP with thermal conductivity of less than 4 mW/m.K. The refrigerator prototypes will also be produced by the integration of the VIPs and various tests with regard to performance and heat losses will be performed.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Coordinator

ARCELIK A.S.

Address

Karaagac, Sutluce Beyoglu Cad. No:2-6
34445 Istanbul

Turkey

Activity type

Other

EU Contribution

€ 100 000

Administrative Contact

Faruk Bayraktar (Dr.)

Project information

Grant agreement ID: 303931

Status

Closed project

  • Start date

    1 March 2012

  • End date

    29 February 2016

Funded under:

FP7-PEOPLE

  • Overall budget:

    € 100 000

  • EU contribution

    € 100 000

Coordinated by:

ARCELIK A.S.

Turkey