CORDIS
EU research results

CORDIS

English EN
Synthetic Expansion of Magnetic Molecules Into Spintronic Devices

Synthetic Expansion of Magnetic Molecules Into Spintronic Devices

Objective

"Molecular spintronics is emerging as a rapidly growing field at the interface of inorganic molecular chemistry, surface sciences, and condensed matter physics fueled by both the fundamental interest in the underlying charge and spin transport mechanisms, and the prospects of the combined exploitation of molecular charge and spin states in a revolutionary new class of molecular-based ultra-low power devices translating their spin/charge response characteristics into novel, non-trivial functionalities. The research project proposes a range of innovative synthetic functionalization strategies of magnetic molecules that allow for targeted multi-terminal contacting of individual molecules in an approach representing a paradigm shift from existing top-down contact techniques in molecular spintronics. The project aims to reverse this existing approach and focuses on multi-step growth, controllable at the molecular level, of metallic electrode structures directly originating at a molecular magnet, as well as on controlled anchoring of the magnetic molecules to metal oxide surfaces of gate electrodes. Central to the proposal are magnetically functionalized polyoxometalates which provide a range of advantages relevant to molecular spintronics such as high stability, redox activity, structural versatility, tuneability of their molecular magnetic structures, as well growth strategies of metallic nanostructures such as quantum size-effect-controlled growth of metallic island structures. The synthetic expansion of molecule-attached metal nanocluster precursor structures into functional multi-terminal contacts addressable by multi-tip STM setups will lead to a breakthrough in reproducible charge transport measurements of single magnetic molecules and access to their fascinating Kondo physics, while the targeted technological breakthrough targets a chemically controlled integration of single magnetic molecules into nanostructured environments of spintronic devices."

Principal Investigator

Paul Kögerler (Prof.)

Host institution

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

Address

Templergraben 55
52062 Aachen

Germany

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 1 467 200

Principal Investigator

Paul Kögerler (Prof.)

Administrative Contact

Ernst Schmachtenberg (Prof.)

Beneficiaries (1)

Sort alphabetically

Sort by EU Contribution

Expand all

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

Germany

EU Contribution

€ 1 467 200

Project information

Grant agreement ID: 308051

Status

Closed project

  • Start date

    1 November 2012

  • End date

    31 October 2017

Funded under:

FP7-IDEAS-ERC

  • Overall budget:

    € 1 467 200

  • EU contribution

    € 1 467 200

Hosted by:

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

Germany