CORDIS
EU research results

CORDIS

English EN
Multistage-Multifunctional Porous Silicon Nanovectors for Directed Theranostics

Multistage-Multifunctional Porous Silicon Nanovectors for Directed Theranostics

Objective

The progress of nanotechnology during the last decades has had a strong impact to the current research of biomedical applications, in particular against dreadful diseases such as cancer. It is estimated that more than 12 million cases of cancer are diagnosed every year worldwide. Multidrug resistance, rapid elimination by the immune system, enzymatic degradation, and poor targeting efficiency are still the major obstacles of the nanomedicines used in cancer therapy. The integration of imaging and therapeutic agents into a single carrier (theranostics) allows simultaneously detection, diagnostics, and treatment of the diseases, which may enhance both expectancy and quality of life of the patients.
In the proposed project a systematic approach is taken towards developing and testing of novel multistage–multifunctional nanovectors based on the fusion between stage-2 nanoporous silicon nanoparticles and stage-1 polymersomes (fused materials = protocells, cell-like particles) for directed (targeted/personalized) therapy and multimodal imaging. With this approach it is aimed to decouple the quadruple functions of the protocell nanovectors in order to generate relevant preclinical information for rapid translation into the clinic: sufficient multifunctionality to avoid biological barriers, recognition of their targets, accounting for non-invasive in vivo imaging and delivery of therapeutics. The overall distinct and final milestones are: to ligand-anchored, co-loading of drug(s)-dye(s), and dual radiolabelling of the precisely tailored protocell nanovectors for simultaneously targeting the tumour vasculature cells, stimulating the immune system response and multimodal imaging in vivo. It is also aimed to evaluate the suitability and effectiveness of the designed nanodevices by employing in vitro models and in vivo imaging techniques and to achieve a comprehensive and deeper understanding on the cellular interactions between the protocell nanovectors and the cancer cells.

Principal Investigator

Hélder Almeida Santos (Prof.)

Host institution

HELSINGIN YLIOPISTO

Address

Yliopistonkatu 3
00014 Helsingin Yliopisto

Finland

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 1 499 603

Principal Investigator

Hélder Almeida Santos (Prof.)

Administrative Contact

Pilvi Toppinen (Ms.)

Beneficiaries (1)

Sort alphabetically

Sort by EU Contribution

Expand all

HELSINGIN YLIOPISTO

Finland

EU Contribution

€ 1 499 603

Project information

Grant agreement ID: 310892

Status

Closed project

  • Start date

    1 January 2013

  • End date

    31 December 2017

Funded under:

FP7-IDEAS-ERC

  • Overall budget:

    € 1 499 603

  • EU contribution

    € 1 499 603

Hosted by:

HELSINGIN YLIOPISTO

Finland