Skip to main content

Development of Self-lubricating Nanocomposite Coatings impregnated with in-situ formed MoS2 for Tribological Applications

Objective

"Use of self-lubricated coatings in dynamic contacting parts of the system not only reduces complexity, weight, and cost to the system, but also improves the performance to a great extent by reducing friction and wear. Unlike liquid lubricants, the release of various toxic and harmful chemicals to the environment can also be avoided. So, a self-lubricated surface with a long lifetime is a promising one to meet future challenges. The most common solid lubricants are graphite and transition metals layered dichalcogenides, among which MoS2/WS2 has a great prominence. In this proposal, electrodeposition of Co-W alloys impregnated with MoS2 and WC nanoparticles will be carried out to form nanocomposite coatings by a low cost electrodeposition process. The idea is to impart high hardness and mechanical strength by WC particles for wear resistance; and self-lubrication property by MoS2 particles to a Co-W matrix. Firstly, unlike ELECTROLYTIC CO-DEPOSITION from suspensions of MoS2 nanoparticles, here, emphasis will be on the in-situ formation of MoS2 particles in the electrical double layer followed by their incorporation into Co-W alloys during electrolytic reduction process. Secondly, R&D efforts will be directed to co-deposit WC particles from suspensions along with MoS2 to make self-lubricated wear-resistant nanocomposite coatings. The detailed mechanistic study of MoS2 nucleation and growth; the surface and structural characterization of the nanocomposite coatings, wear and friction property and corrosion will be investigated to understand the structure property correlation. Thirdly, the electrodeposition of Co-W+WC+IF-MoS2 nanocomposite coatings will be carried out from electrolytic suspensions of WC and IF-MoS2 nanoparticles, and the properties will be compared with the former nanocomposites. A special attention will be given on the onset of an implementation of this technology into industrial practice."

Call for proposal

FP7-PEOPLE-2007-4-2-IIF
See other projects for this call

Coordinator

DEPARTMENT OF ATOMIC ENERGY
Address
Anushakti Bhavan, C.s.m. Marg.
400 001 Mumbai
India
Activity type
Public bodies (excluding Research Organisations and Secondary or Higher Education Establishments)
EU contribution
€ 15 000
Administrative Contact
A.K. Suri (Dr.)