Skip to main content
European Commission logo print header

Novel Delivery Platform for Hydrophobic Drugs

Objective

Underpinned by pharmaceutical-industry estimates that approximately 40% of lipophilic therapeutic molecules are rejected because of their poor aqueous solubility and formulation-stability issues, one of the main challenges facing modern pharmaceutical science is the development of carrier vehicles for the extended delivery of such drug candidates. Additional impetus for such research activities is provided by the potential of such carriers to improve the therapeutic profiles of many of the widely used hydrophobic chemotherapeutants. Nowday, carrier vehicles for the delivery of hydrophobic drugs are associated with several disadvantages: conventional emulsions, micelles and liposomes are thermodynamically unstable; lipophilic carriers cluster in blood flow and are rapidly opsonized and massively cleared by liver and spleen; loading capacity of hydrophobic drugs into hydrophilic carriers is limited. Rationalised in the terms of thermodynamic stability, capability to move through blood capillaries, imrpoved drug loading capacity, surface-charged hydrophilicity, and capacity to effect controlled drug release, one of the approaches towards addressing these issues involves the use of superabsorbent polyelectrolytes-based nanogels with affinity for both water and organic liquids. Towards the development of biomaterials for the delivery of hydrophobic drugs, in this project, biocompatible, polymerisable Room Temperature Ionic Liquids (RTILs) based on 1-vinylimidazole and amino acids, as well as nanoparticulate co-polymeric gels of the same RTILs and 2-hydroxyethyl methacrylate (HEMA)/1-vinyl-2-pyrrolidone (NVP) with superabsorbency for both water and several organic liquids will be synthesized and characterised. The suitability of the nanogels to be a novel delivery platform for hydrophobic/aqueously unstable drugs will be assessed in vitro in the terms of biocompatibility, drug uploading and release profiles.

Call for proposal

FP7-PEOPLE-2012-IIF
See other projects for this call

Coordinator

UNIVERSITY OF PORTSMOUTH HIGHER EDUCATION CORPORATION
EU contribution
€ 309 235,20
Address
WINSTON CHURCHILL AVENUE UNIVERSITY HOUSE
PO1 2UP Portsmouth
United Kingdom

See on map

Region
South East (England) Hampshire and Isle of Wight Portsmouth
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Liz Bartle (Dr.)
Links
Total cost
No data