CORDIS
EU research results

CORDIS

English EN

Indium replacement by single-walled carbon nanotube thin films

Objective

"This project aims to develop high performance materials, i.e. both metallic and semiconducting single-walled carbon nanotube (SWCNT) thin films to completely eliminate the use of the critical metals in electron devices: i) Indium in transparent conducting films (TCF, indium oxide doped by tin, ITO) and ii) Indium and Gallium as semiconductor In–Ga–Zn–O (a-IGZO) in thin film field effect transistors (TFTs). The target values for fully flexible transparent electrodes based on SWCNT thin films are 10 ohms/sq at 90% transparency, i.e. comparable to ITO-on-glass, with the midterm milestone of 40 ohms/sq at 90% transparency. The applicability of the developed SWCNT films will be further demonstrated in the high-performance TFTs on flexible and transparent polymer (Ion >1mA/mm, Ion/Ioff >10^5) and in 48 zone capacitive SWCNT touch sensor. Because of the rich resource of carbon element, recycling is not needed and the film material supports the friendly environment approach. During the growth of SWCNTs common transition metal nanoparticles will be used as catalyst. Based on the fundamental understandings, the performance and reliability of SWCNT transparent conductors and TFTs will be improved in this project, so that they can be used in highly performing products in the long term, such as AMOLEDs and future flexible electron devices with very large commercial potential in future consumer electronics. The project contributes to reduce the European and Japanese electronics industry dependence on the indium resources as well as the cost of manufacturing. Industrial partners from both Japan and EU will be invited to join the dissemination meetings to learn about the project results. Thus the project contributes to increase the competitiveness of the industry, especially to the SME's developing novel flexible electronics products. Project involves 3 world class teams from both Europe and Japan, having complementary expertise in nanotube synthesis, thin film manufacturing and flexible device manufacturing, in addition to detailed modeling of nanotube growth and thin film charge transport processes. Active exchange of researchers (minimum of 12 person months from EU to Japan and vice versa) will deepen the EU-Japan collaboration."
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Coordinator

AALTO KORKEAKOULUSAATIO SR

Address

Otakaari 1
02150 Espoo

Finland

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 711 734

Administrative Contact

Riina Kero (Mrs.)

Participants (2)

Sort alphabetically

Sort by EU Contribution

Expand all

DANMARKS TEKNISKE UNIVERSITET

Denmark

EU Contribution

€ 562 392

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

France

EU Contribution

€ 525 522

Project information

Grant agreement ID: 604472

Status

Closed project

  • Start date

    1 September 2013

  • End date

    28 February 2017

Funded under:

FP7-NMP

  • Overall budget:

    € 2 349 301

  • EU contribution

    € 1 799 648

Coordinated by:

AALTO KORKEAKOULUSAATIO SR

Finland