Skip to main content
European Commission logo print header

Colloids with complex interactions: from model atoms to colloidal recognition and bio-inspired self assembly

Objetivo

Self-assembly is the key construction principle that nature uses so successfully to fabricate its molecular machinery and highly elaborate structures. In this project we will follow nature’s strategies and make a concerted experimental and theoretical effort to study, understand and control self-assembly for a new generation of colloidal building blocks. Starting point will be recent advances in colloid synthesis strategies that have led to a spectacular array of colloids of different shapes, compositions, patterns and functionalities. These allow us to investigate the influence of anisotropy in shape and interactions on aggregation and self-assembly in colloidal suspensions and mixtures. Using responsive particles we will implement colloidal lock-and-key mechanisms and then assemble a library of “colloidal molecules” with well-defined and externally tunable binding sites using microfluidics-based and externally controlled fabrication and sorting principles. We will use them to explore the equilibrium phase behavior of particle systems interacting through a finite number of binding sites. In parallel, we will exploit them and investigate colloid self-assembly into well-defined nanostructures. Here we aim at achieving much more refined control than currently possible by implementing a protein-inspired approach to controlled self-assembly. We combine molecule-like colloidal building blocks that possess directional interactions and externally triggerable specific recognition sites with directed self-assembly where external fields not only facilitate assembly, but also allow fabricating novel structures. We will use the tunable combination of different contributions to the interaction potential between the colloidal building blocks and the ability to create chirality in the assembly to establish the requirements for the controlled formation of tubular shells and thus create a colloid-based minimal model of synthetic virus capsid proteins.

Convocatoria de propuestas

ERC-2013-ADG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-AG - ERC Advanced Grant

Institución de acogida

MAX IV Laboratory, Lund University
Aportación de la UE
€ 2 498 040,00
Dirección
Paradisgatan 5c
22100 LUND
Suecia

Ver en el mapa

Región
Södra Sverige Sydsverige Skåne län
Tipo de actividad
Higher or Secondary Education Establishments
Investigador principal
Peter Schurtenberger (Prof.)
Contacto administrativo
Peter Schurtenberger (Prof.)
Enlaces
Coste total
Sin datos

Beneficiarios (1)