Skip to main content

Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy

Objectif

"X-ray crystallography yields atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes constituting the macromolecular machinery of life. Life is not static, and many of the most important reactions in chemistry and biology are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by ultrafast laser spectroscopy, but they reduce the vast complexity of the process to a few reaction coordinates. Here we develop attosecond serial crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology. We apply a fully coherent attosecond X-ray source based on coherent inverse Compton scattering off a free-electron crystal, developed in this project, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals [A. Cho, ""Breakthrough of the year"", Science 388, 1530 (2012)]. Our synergistic project will optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. The multidisciplinary team optimizes X-ray pulse parameters, in tandem with sample delivery, crystal size, and advanced X-ray detectors. We will apply our new capabilities to one of the most important problems in structural biology, which is to elucidate the dynamics of light reactions, electron transfer and protein structure in photosynthesis. Also, the attosecond source can provide a coherent seed and will help to overcome peak flux limitations of X-ray FELs by introducing chirped pulse amplification to FEL technology."

Champ scientifique

  • /sciences naturelles/sciences chimiques/chimie analytique/spectroscopie
  • /sciences naturelles/sciences physiques/optique/physique des lasers/lasers ultra-brefs
  • /sciences naturelles/sciences biologiques/biochimie/biomolécules/protéines
  • /sciences naturelles/sciences biologiques/biologie moléculaire/biologie structurale
  • /sciences naturelles/sciences de la Terre et sciences connexes de l’environnement/géologie/minéralogie/cristallographie

Appel à propositions

ERC-2013-SyG
Voir d’autres projets de cet appel

Régime de financement

ERC-SyG - Synergy grant

Chercheur en chef

Franz Xaver Kaertner (Prof.)

Institution d’accueil

STIFTUNG DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY
Adresse
Notkestrasse 85
22607 Hamburg
Allemagne
Type d’activité
Research Organisations
Contribution de l’UE
€ 10 774 200
Chercheur principal
Franz Xaver Kaertner (Prof.)
Contact administratif
Ute Krell (Dr.)

Bénéficiaires (2)

STIFTUNG DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY
Allemagne
Contribution de l’UE
€ 10 774 200
Adresse
Notkestrasse 85
22607 Hamburg
Type d’activité
Research Organisations
Chercheur principal
Franz Xaver Kaertner (Prof.)
Contact administratif
Ute Krell (Dr.)
UNIVERSITAET HAMBURG
Allemagne
Contribution de l’UE
€ 3 110 000
Adresse
Mittelweg 177
20148 Hamburg
Type d’activité
Higher or Secondary Education Establishments
Contact administratif
Simone Ludwig (Ms.)