Skip to main content
European Commission logo print header

Big Splash: Efficient Simulation of Natural Phenomena at Extremely Large Scales

Descrizione del progetto

Simulazioni computazionali innovative di fenomeni naturali

Le simulazioni computazionali sono fondamentali in diversi ambiti; tuttavia, è impossibile effettuare dei calcoli dettagliati su grandi scale perché i fenomeni più importanti dipendono dall’intricato accoppiamento tra dettagli su piccola scala e comportamento su larga scala. Il calcolo a forza bruta di tali fenomeni è impraticabile e le attuali tecniche adattive sono troppo costose, rozze o delicate per catturare le sottili instabilità su piccola scala. Il progetto Big Splash, finanziato dall’UE, propone due metodi: il primo combina numerica e forma per esaminare un attento disaccoppiamento della dinamica dalla geometria e sviluppare tecniche per fondere soluzioni analitiche su piccola scala con algoritmi numerici su larga scala. Il secondo manipola i dati di simulazione su larga scala accelerando notevolmente il calcolo grazie a nuovi approcci di riduzione delle dimensioni e di compressione dei dati.

Obiettivo

Computational simulations of natural phenomena are essential in science, engineering, product design, architecture, and computer graphics applications. However, despite progress in numerical algorithms and computational power, it is still unfeasible to compute detailed simulations at large scales. To make matters worse, important phenomena like turbulent splashing liquids and fracturing solids rely on delicate coupling between small-scale details and large-scale behavior. Brute-force computation of such phenomena is intractable, and current adaptive techniques are too fragile, too costly, or too crude to capture subtle instabilities at small scales. Increases in computational power and parallel algorithms will improve the situation, but progress will only be incremental until we address the problem at its source.

I propose two main approaches to this problem of efficiently simulating large-scale liquid and solid dynamics. My first avenue of research combines numerics and shape: I will investigate a careful de-coupling of dynamics from geometry, allowing essential shape details to be preserved and retrieved without wasting computation. I will also develop methods for merging small-scale analytical solutions with large-scale numerical algorithms. (These ideas show particular promise for phenomena like splashing liquids and fracturing solids, whose small-scale behaviors are poorly captured by standard finite element methods.) My second main research direction is the manipulation of large-scale simulation data: Given the redundant and parallel nature of physics computation, we will drastically speed up computation with novel dimension reduction and data compression approaches. We can also minimize unnecessary computation by re-using existing simulation data. The novel approaches resulting from this work will undoubtedly synergize to enable the simulation and understanding of complicated natural and biological processes that are presently unfeasible to compute.

Meccanismo di finanziamento

ERC-STG - Starting Grant

Coordinatore

INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
Contribution nette de l'UE
€ 1 500 000,00
Indirizzo
Am campus 1
3400 Klosterneuburg
Austria

Mostra sulla mappa

Regione
Ostösterreich Niederösterreich Wiener Umland/Nordteil
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 500 000,00

Beneficiari (1)