Skip to main content
European Commission logo print header

Quantum magnonics in insulators

Descrizione del progetto

Un qubit superconduttivo e un magnete in un isolante magnetico

La magnonica quantistica è un’area di ricerca emergente che si concentra sui magnoni, quasi-particelle che possono trasportare spin a distanze dell’ordine dei centimetri in modo molto rapido. I magnoni sono l’equivalente quasi-particellare delle onde di spin, che propagano i cambiamenti negli allineamenti di spin degli elettroni nei materiali magnetici. Il progetto QUMIN, finanziato dal Consiglio europeo della ricerca, si baserà sui recenti sviluppi nei campi della spintronica, dell’elettrodinamica quantistica dei circuiti e dell’informatica quantistica superconduttiva per creare stati quantistici ibridi magnone/fotone e magnone/qubit. Il team di ricerca manipolerà e controllerà la loro coerenza congiunta, con l’obiettivo di collegare un qubit superconduttore e un magnete. L’isolante magnetico ittrio-ferro-granato svolgerà un ruolo essenziale per il successo del progetto.

Obiettivo

In the QUMIN proposal we will build on recent developments in spintronics, circuit quantum electrodynamics and superconducting quantum computing in order to advance the fledgling research field of quantum magnonics. We will employ micro-scale magnonic resonators fabricated from YIG thin films and planar superconducting microwave resonators and superconducting transmon qubits. The combination of these basic elements will enable us to create hybrid magnon/photon and magnon/qubit quantum states and probe and control their joint coherence. An end goal of the project is to controllably entangle a superconducting qubit and a magnet.

The concept of circuit quantum electrodynamics, developed in superconducting quantum computing, has enabled strong light-matter coupling at microwave frequencies and has been one of the driving forces behind the advances in quantum computing. Over the same time frame there has been an intense development of microwave spintronics partly motivated by the discovery of spin-transfer torque and spin pumping. Most recently, motivated by its exceptional magnetic properties, there has been a renaissance of research in magnetic insulator YIG. Initial experiments show strong coupling between electromagnetic resonators and magnetic resonators. But this is just the start and a wide variety of increasingly sophisticated experiments are to follow.

An important aspect of our proposal is to use the non-uniform modes of micro-scale magnonic resonators, enabling experiments close to or at zero magnetic field to ensure compatibility with superconducting qubits. Furthermore we place an emphasis on the use of microwave spintronic techniques, using the spin-Hall effect in order to control and measure the magnonic resonator. As well as exploring this new quantum magnonics avenue, our proposal will further understanding into the room-temperature magnetic phenomena that make YIG an essential material for microwave electronics.

Parole chiave

Meccanismo di finanziamento

ERC-COG - Consolidator Grant

Istituzione ospitante

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Contribution nette de l'UE
€ 2 399 381,99
Indirizzo
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
Regno Unito

Mostra sulla mappa

Regione
East of England East Anglia Cambridgeshire CC
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 2 399 381,99

Beneficiari (1)