Skip to main content
European Commission logo print header

Next-Generation Cardiac Tissue Engineering: Smart Self-Regulating Patches

Description du projet

Des patchs cardiaques intelligents surveillent la régénération in vivo

L’infarctus du myocarde provoque l’obstruction d’une des artères coronaires qui alimentent le tissu cardiaque, ce qui entraîne une restriction de l’apport d’oxygène à un segment du cœur. Cela provoque la mort des cardiomyocytes, mais la cicatrisation et la régénération du tissu cardiaque sont limitées. L’ingénierie tissulaire pourrait constituer une alternative thérapeutique prometteuse pour les cardiopathies ischémiques. Il n’existe cependant aucun moyen de contrôler les performances du tissu créé. Financé par le Conseil européen de la recherche, le projet SmartCardiacPatch entend développer des patchs cardiaques implantables intelligents qui intègrent des composants électroniques pour une surveillance en temps réel. Le patch comprendra un échafaudage en 3D de cellules cardiaques et permettra aux médecins de suivre la régénération du cœur en temps réel, et de gérer la maladie.

Objectif

Ischemic heart disease is a major cause of death in the Western world. There is no sustainable regenerative therapy available at the moment, with cardiac transplantation being the only therapy. However, tissue engineering is envisioned as a true regenerative therapeutic alternative. Despite the incremental improvements no technology is currently available that can provide on-line monitoring and reporting of the engineered tissue performance, and if needed, automatically activate regenerative processes. As one initial step in that direction, we have recently shown on a non-implantable chip-supported level that a sensory system can be integrated with engineered tissues, providing report on cardiac electrical activity.
In this proposal, I plan to expand far beyond the state-of-the-art and develop a conceptually new approach to engineer the next generation of smart implantable cardiac patches. These patches will integrate complex electronics with engineered cardiac tissues to enable on-line monitoring and at the same time self-regulation of the tissue function. Since cardiac performance will be recorded over time, physicians could follow heart regeneration in real-time, providing new means for the disease management.
To achieve this goal I will first develop new porous, stretchable and biocompatible microelectronics enabling electrical activity recording and stimulation. The electronics will interact with an efficient electroactive controlled release system enabling on-demand release of biomolecules. The system will be integrated with a 3D biomaterial scaffold and cardiac cells to compose the microelectronic cardiac patch (microECP). Development of feedback loop software will ensure efficient regulation of the patch’s function over time. Next, we will elucidate the interplay between the electronics, scaffold and cells, and provide a proof-of-principle for the microECP in vitro. Finally, we will investigate the regenerative potential of the system following infarction.

Régime de financement

ERC-STG - Starting Grant

Institution d’accueil

TEL AVIV UNIVERSITY
Contribution nette de l'UE
€ 1 499 500,00
Adresse
RAMAT AVIV
69978 Tel Aviv
Israël

Voir sur la carte

Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 499 500,00

Bénéficiaires (1)