CORDIS
EU research results

CORDIS

English EN
Molecular mechanisms of acute oxygen sensing.

Molecular mechanisms of acute oxygen sensing.

Objective

Oxygen (O2) is essential for life on Earth. This proposal deals with the study of the molecular mechanisms underlying acute O2 sensing by cells, a long-standing issue that is yet to be elucidated. In recent years, the discovery of hypoxia inducible transcription factors and their regulation by the O2-dependent hydroxylases has provided a solid framework for understanding genetic responses to sustained (chronic) hypoxia. However the mechanisms of acute O2 sensing, necessary for the activation of rapid, life-saving, compensatory respiratory and cardiovascular reflexes (e.g. hyperventilation and sympathetic activation), are unknown. While the primary goal of the project is to characterize the molecular mechanisms underlying acute O2 sensing by arterial chemoreceptors (carotid body –CB- and adrenal medulla –AM-), we will also extend our study to other organs (e.g. pulmonary and systemic arteries) of the homeostatic acute O2-sensing system. We will investigate the role of mitochondria, in particular complex I (MCI), in acute O2 sensing. Previous data from our group demonstrated that rotenone, a MCI blocker, selectively occludes responsiveness to hypoxia in CB cells. In addition, our unpublished data indicate that sensitivity to hypoxia (but not to other stimuli) is lost in mice with genetic disruption of MCI genes in CB and AM cells. We have shown that the adult CB is a plastic organ that contains a population of multipotent neural stem cells. Hence, another objective of the project is to study the role of these stem cells in CB modulation (over- or infra-activation), which may participate in the pathogenesis of diseases. In the past, our group has made seminal contributions to unveiling the cellular bases of arterial chemoreception. The discovery of stem cells in the CB and the generation of new genetically modified mouse models, put us in a leading position to elucidate the molecular bases of acute O2 sensing and their biomedical implications.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Host institution

UNIVERSIDAD DE SEVILLA

Address

Calle S. Fernando 4
41004 Sevilla

Spain

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 2 843 750

Beneficiaries (1)

Sort alphabetically

Sort by EU Contribution

Expand all

UNIVERSIDAD DE SEVILLA

Spain

EU Contribution

€ 2 843 750

Project information

Grant agreement ID: 669220

Status

Ongoing project

  • Start date

    1 November 2015

  • End date

    31 October 2020

Funded under:

H2020-EU.1.1.

  • Overall budget:

    € 2 843 750

  • EU contribution

    € 2 843 750

Hosted by:

UNIVERSIDAD DE SEVILLA

Spain