CORDIS
EU research results

CORDIS

English EN
CMOS/magnetoelectronic Integrated Circuits wil Multifunctional Capabilities

CMOS/magnetoelectronic Integrated Circuits wil Multifunctional Capabilities

Objective

Spin Transfer Torque Magnetic memories (STT-MRAM) are receiving a growing R&D effort within the microelectronic industry aiming at the replacement of DRAM or SRAM at sub-20nm nodes.
MAGICAL seeks to significantly innovate through groundbreaking advances in ultra-low power multifunctional systems based on hybrid CMOS/magnetic technology. With the development of portable electronics and of the Internet of Things (IOT), more and more functions must be embedded on chips: logic/memory, sensing, communication, etc. The current hurdles with today's technology are power consumption, communication bandwidth, processing/ packaging costs. MAGICAL will demonstrate that these limitations can be largely overcome through hybrid CMOS/magnetic technology.
The project will follow three main goals:
- Firstly, we will strengthen the STT-MRAM technology by investigating two novel ideas aiming at solving two remaining difficulties in sub-20nm STT-MRAM development: the nanostructuration of magnetic tunnel junctions and the long-term data retention. This will open the path to high density (>Gbit) STT-MRAM.
-Secondly, we will demonstrate that Digital, analog (3D magnetic field sensing for orientation sensor), RF communication functions can be realized with the same baseline technology as the one developed for STT-MRAM. As a result, these three types of functions can be homogeneously integrated in a single chip, a major improvement compared to conventional heterogeneous integration. The prime benefits expected from MAGICAL are: ultralow power thanks to MRAM non volatility and on-chip computation capability, greatly improved communication functionalities (cloud as well as intrachip communication), reduced process/packaging costs.
-Thirdly, through various actions, MAGICAL will aim at narrowing the cultural gap that still exists between magnetism and microelectronics communities.
The project could definitely help the European microelectronic systems industry improve its leadership position.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Host institution

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

Address

Rue Leblanc 25
75015 Paris 15

France

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 2 500 000

Beneficiaries (1)

Sort alphabetically

Sort by EU Contribution

Expand all

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

France

EU Contribution

€ 2 500 000

Project information

Grant agreement ID: 669204

Status

Ongoing project

  • Start date

    1 November 2015

  • End date

    31 October 2020

Funded under:

H2020-EU.1.1.

  • Overall budget:

    € 2 500 000

  • EU contribution

    € 2 500 000

Hosted by:

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

France