Skip to main content
European Commission logo print header

Host-virus chemical arms race during algal bloom in the ocean at a single cell resolution

Description du projet

Le rôle des interactions hôte-virus dans la dynamique des écosystèmes

Les efflorescences de phytoplancton sont souvent visibles à la surface des eaux douces et marines et jouent un rôle clé dans le réseau trophique, car elles assurent la moitié de l’activité photosynthétique de la Terre. Elles influencent également le climat mondial en régulant les flux de carbone et d’azote. Les proliférations de phytoplancton prennent fin à la suite d’une infection par des virus spécifiques, libérant du carbone et d’autres molécules dans l’eau et dans l’atmosphère. Financé par le Conseil européen de la recherche, le projet Virocellsphere s’intéresse à l’impact écologique des virus et à la manière dont les interactions virus-hôtes régulent la prolifération du phytoplancton. Les chercheurs cartographieront la transcriptomique et le paysage métabolique des cellules individuelles et évalueront la sensibilité et la résistance au virus. Le projet permettra d’améliorer notre compréhension des écosystèmes marins.

Objectif

Phytoplankton blooms are ephemeral events of exceptionally high primary productivity that regulate the flux of carbon across marine food webs. The cosmopolitan coccolithophore Emiliania huxleyi (Haptophyta) is a unicellular eukaryotic alga responsible for the largest oceanic algal blooms covering thousands of square kilometers. These annual blooms are frequently terminated by a specific large dsDNA E. huxleyi virus (EhV).
Despite the huge ecological importance of host-virus interactions, the ability to assess their ecological impact is limited to current approaches, which focus mainly on quantification of viral abundance and diversity. On the molecular basis, a major challenge in the current understanding of host-virus interactions in the marine environment is the ability to decode the wealth of “omics” data and translate it into cellular mechanisms that mediate host susceptibility and resistance to viral infection.
In the current proposal we intend to provide novel functional insights into molecular mechanisms that regulate host-virus interactions at the single-cell level by unravelling phenotypic heterogeneity within infected populations. By using physiological markers and single-cell transcriptomics, we propose to discern between host subpopulations and define their different “metabolic states”, in order to map them into different modes of susceptibility and resistance. By using advanced metabolomic approaches, we also aim to define the infochemical microenvironment generated during viral infection and examine how it can shape host phenotypic plasticity. Mapping the transcriptomic and metabolic footprints of viral infection will provide a meaningful tool to assess the dynamics of active viral infection during natural E. huxleyi blooms. Our novel approaches will pave the way for unprecedented quantification of the “viral shunt” that drives nutrient fluxes in marine food webs, from a single-cell level to a population and eventually ecosystem levels.

Régime de financement

ERC-COG - Consolidator Grant

Institution d’accueil

WEIZMANN INSTITUTE OF SCIENCE
Contribution nette de l'UE
€ 2 749 901,00
Adresse
HERZL STREET 234
7610001 Rehovot
Israël

Voir sur la carte

Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 2 749 901,00

Bénéficiaires (1)