CORDIS
EU research results

CORDIS

English EN
Magnetic Solid Lipid Nanoparticles as a Multifunctional Platform against Glioblastoma Multiforme

Magnetic Solid Lipid Nanoparticles as a Multifunctional Platform against Glioblastoma Multiforme

Objective

Central nervous system (CNS) tumors are an important cause of morbidity and mortality worldwide. Among them, glioblastoma multiforme (GBM) is the most aggressive and lethal, characterized by extensive infiltration into the brain parenchyma. Under the standard treatment protocols, GBM patients can expect a median survival of 14.6 months, while less than 5% of patients live longer than 5 years. This poor prognosis is due to several factors, including the highly aggressive and infiltrative nature of GBM, resulting in incomplete resection, and the limited delivery of therapeutics across the blood-brain-barrier (BBB).
The present project aims at addressing these therapeutic challenges by proposing a nanotechnology-based approach for the treatment of GBM, focused on the selective uptake of drug-loaded multifunctional magnetic solid lipid nanoparticles (SLNs). An external magnetic guidance will help the SLN accumulation on the cerebral endothelium, where, owing to their lipid nature, they will be allowed to enter the CNS. Here, appropriate surface ligands will drive their internalization inside cancer cells. The chemotherapeutic payload will undergo release, allowing a targeted pharmaceutical treatment that will be combined to hyperthermia upon appropriate radiofrequency application. A synergic attack against GBM will thus be performed, consisting of a chemical attack thanks to the drug, and a physical attack thanks to hyperthermia, that will dramatically enhance the possibilities of therapeutic success.
By demonstrating the effectiveness of the platform to cross the BBB and to support tumor regression, a huge impact on human healthcare is envisioned. Moreover, further outcomes of this project are expected by considering the development of nanotechnology-based, multi-functional solutions that can easily be adapted to many other high-impact diseases, in particular at the brain level, where BBB crossing poses a crucial obstacle to many therapeutic approaches.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Host institution

FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA

Address

Via Morego 30
16163 Genova

Italy

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 1 499 997,42

Beneficiaries (1)

Sort alphabetically

Sort by EU Contribution

Expand all

FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA

Italy

EU Contribution

€ 1 499 997,42

Project information

Grant agreement ID: 709613

Status

Ongoing project

  • Start date

    1 March 2017

  • End date

    28 February 2022

Funded under:

H2020-EU.1.1.

  • Overall budget:

    € 1 499 997,42

  • EU contribution

    € 1 499 997,42

Hosted by:

FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA

Italy