CORDIS
EU research results

CORDIS

English EN
Hierarchically Engineered Inorganic Nanomaterials from the atomic to supra-nanocrystalline level as a novel platform for SOLution Processed SOLar cells

Hierarchically Engineered Inorganic Nanomaterials from the atomic to supra-nanocrystalline level as a novel platform for SOLution Processed SOLar cells

Objective

Solution processed inorganic nanocrystal (NC) materials have received enormous attention as an emerging technology to address the TW challenge in solar cells. These nanomaterials offer a unique opportunity for low-cost high efficiency all-inorganic solar cells. Despite the great efforts though, only a limited number of colloidal NC compounds has been successfully employed, which either rely on costly and scarce elements or toxic materials. HEINSOL´s mission is to develop the first highly efficient, robust solution processed solar cell platform based on environmentally friendly, Earth abundant materials. To achieve this, HEINSOL undertakes a hierarchical approach to tailor the opto-electronic properties of inorganic NCs, starting from the control of composition and their properties at the atomic level and following up with further tailoring their optoelectronic properties via interactions at the supra-nanocrystalline level. HEINSOL, at the atomic level, will develop novel doping schemes for colloidal NCs to tailor their electronic character as well as passivation schemes to reduce the density of unfavourable trap states. At the supra-nanocrystalline level, HEINSOL will explore novel nano-heterojunctions that cater for efficient charge separation and suppressed recombination, elements of paramount importance in high performance solar cells. The microscopic properties of the NCs will be correlated with the macroscopic properties of the NC composites in operating devices, a methodology that will provide new insights on the underlying mechanisms at the nanoscale that govern the properties of those devices. The final goal is to introduce a new architectural platform for solution processed solar cells that will truly expand the material availability for the Photovoltaic Industry.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Host institution

FUNDACIO INSTITUT DE CIENCIES FOTONIQUES

Address

Avinguda Carl Friedrich Gauss 3
08860 Castelldefels

Spain

Activity type

Research Organisations

EU Contribution

€ 2 486 865

Beneficiaries (1)

Sort alphabetically

Sort by EU Contribution

Expand all

FUNDACIO INSTITUT DE CIENCIES FOTONIQUES

Spain

EU Contribution

€ 2 486 865

Project information

Grant agreement ID: 725165

Status

Ongoing project

  • Start date

    1 February 2017

  • End date

    31 January 2022

Funded under:

H2020-EU.1.1.

  • Overall budget:

    € 2 486 865

  • EU contribution

    € 2 486 865

Hosted by:

FUNDACIO INSTITUT DE CIENCIES FOTONIQUES

Spain