CORDIS
EU research results

CORDIS

English EN
Computational dynamics studies of drug metabolism by P450 enzymes

Computational dynamics studies of drug metabolism by P450 enzymes

Objective

Cytochrome P450 enzymes monitor the metabolism of many drugs and small-molecules, as well as selectively catalyze hydrocarbon substrates for application in biotechnology. Drug-drug interactions are critical to the management of safe and effective pharmaceutical treatments. Thus, it is important to better understand the biological functions and activities of P450 enzymes not only to maximize their clinical significance but also to develop broader application in other fields, such as biofuel. There has been significant investment in computational and theoretical studies of P450 enzymes; however, there remains a need for further dynamical calculations to better explore the involvement of the enzyme active site in competing pathways leading to various products. This project aims to determine the role of P450 enzyme in alcohol and alkene formations, compare and contrast heme and non-heme Fe-containing active sites, and model the effect of enzyme environment, using quantum mechanical calculations and inherent dynamics via quasi-classical simulation. The results from this study will help advance the field of computational modeling and its application in biologically important systems.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Coordinator

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

Address

Wellington Square University Offices
Ox1 2jd Oxford

United Kingdom

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 183 454,80

Project information

Grant agreement ID: 752491

Status

Closed project

  • Start date

    21 June 2017

  • End date

    20 June 2019

Funded under:

H2020-EU.1.3.2.

  • Overall budget:

    € 183 454,80

  • EU contribution

    € 183 454,80

Coordinated by:

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

United Kingdom