CORDIS
EU research results

CORDIS

English EN

Origami-based Microfluidic Interface for Cell Signalling

Objective

Cell surface receptors react to a multitude of signal molecules that trigger cellular responses and regulate cell fate. The malfunction of receptors and signals in cells may lead to the development of many diseases, including cancer, diabetes, neurodegeneration or autoimmune disorders. Thus, understanding complex signal pathways is key for future therapeutic approaches and drug development.

This project concerns the development of a high throughput microfluidic device for the investigation of early cell signalling, which is triggered by ligand-decorated DNA origami nanostructures, immobilized on a microarray-patterned surface inside the microfluidic device. By combining state-of-the-art top-down microstructuring and bottom-up self-assembly, this approach allows to present ligands on surfaces with a full control of their absolute number, stoichiometry and nanoscale orientation, enabling to closer mimic the natural cell environment. While the principal functioning of origami-based ligand presentation has very recently been demonstrated by the beneficiary, the here proposed implementation in a microfluidic chip will improve surface stability and robustness, as well as allow automated, on-surface assembly and cell culture processes to open the door to multiplexing and high throughput analyses.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Coordinator

KARLSRUHER INSTITUT FUER TECHNOLOGIE

Address

Kaiserstrasse 12
76131 Karlsruhe

Germany

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 159 460,80

Project information

Grant agreement ID: 746713

Status

Grant agreement terminated

  • Start date

    15 March 2017

  • End date

    14 March 2019

Funded under:

H2020-EU.1.3.2.

  • Overall budget:

    € 159 460,80

  • EU contribution

    € 159 460,80

Coordinated by:

KARLSRUHER INSTITUT FUER TECHNOLOGIE

Germany