Objective
Crystalline silicon wafer solar cells have been dominating the photovoltaic market so far due to the availability and stability of c-Si and the decades of Si technology development. However, without new ways to improve the conversion efficiencies further significant cost reductions will be difficult and the c-Si technology will not be able to maintain its dominant role. In the SiTaSol project we want to increase conversion efficiencies of c-Si solar cells to 30 % by combining it with III-V top absorbers. Such a tandem solar cell will result in huge savings of land area and material consumption for photovoltaic electricity generation and offers clear advantages compared to today’s products. The III-V/Si tandem cell with an active Si bottom junction with one front and back contact is a drop-in-replacement for today’s Si flat plate terrestrial PV. To make this technology cost competitive, the additional costs for the 2-5 µm Ga(In)AsP epitaxy and processing must remain below 1 €/wafer to enable module costs <0.5 €/Watt-peak. It is the intention of the SiTaSol project to evaluate processes which can meet this challenging cost target and to proof that such a solar cell can be produced in large scale. Key priorities are focused on the development of a new growth reactor with efficient use of the precursor gases, enhanced waste treatment, recycling of metals and low cost preparation of the c-Si growth substrate. High performance devices will be demonstrated in an industrial relevant environment. The project SiTaSol approaches these challenges with a strong industrial perspective and brings together some of the most well-known European partners in the field of Si PV and III-V compound semiconductors. Furthermore SiTaSol will support the competitiveness of the European industry by providing innovative solutions for lowering manufacturing costs of III-V materials which are essential in today’s electronic products including laptops, photonic sensors and light emitting diodes.
Fields of science
- engineering and technologyenvironmental engineeringwaste managementwaste treatment processesrecycling
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsoptical sensors
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectrical engineeringpower engineeringelectric power generation
- natural scienceschemical sciencesinorganic chemistrymetalloids
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energyphotovoltaic
Programme(s)
Funding Scheme
RIA - Research and Innovation actionCoordinator
80686 Munchen
Germany
See on map
Participants (6)
3600 Frederikssund
See on map
CB24 5FQ Cambridge
See on map
52134 Herzogenrath
See on map
8010 Graz
See on map
74072 Heilbronn
See on map
2311 EZ Leiden
See on map